#Chuyên mục: Giải trí cùng BĐT
Hôm nay chúng ta lại có một bài BĐT sau đây:
Cho a, b, c là các số thực không âm, a + b + c = 1. Chứng minh:
\(a^2b+b^2c+c^2a\le\frac{4}{27}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giúp mình với cần gấp. sinh học 8
giữa tế bào và cơ thể có mối quan hệ với nhau như thế nào? nêu vd.
Đề cần cm \(\Leftrightarrow bc\le2c^2-b^2\)
\(\Leftrightarrow2c^2-b^2-bc\le0\)
\(\Leftrightarrow\left(c+b\right)\left(c-b\right)+c\left(c-b\right)\le0\)
\(\Leftrightarrow\left(c-b\right)\left(2c+b\right)\le0\)
Luôn đúng
Bui Huyen nhìn chị giải mà em thấy cách mình giải trâu bò quá:( Em sáng tác tưởng khó ai ngờ..
Ta có: \(ab+bc+ca=\left(a-b\right)b+\left(b-c\right)\left(b+c\right)+c\left(a+b+c\right)\)
\(\ge\left(a-b\right)b+c\left(a+b+c\right)\)\(\ge\left(a-b\right)b+c\left(a+2c\right)\)
\(=2c^2+ac-b^2+ab\).
Cách em là thế đó
a) Xét tứ giác AQCP có :
M là trung điểm PQ ( Q là điểm đối xứng với P qua M )
M là trung điểm AC
=> AQCP là hình bình hành
Vì AP\(\perp\)BC
=> AQCP là hình chữ nhật
b) Vì AQCP là hình chữ nhật
=> AQ = PC
=> AQ//PC
=> AQ//BP ( P\(\in\)BC )
Vì ∆ABC cân tại A
Mà AP là đường cao
=> AP là phân giác và trung trực
=> PC = PB
Mà AQ = PC
=> BP = AQ
Xét tứ giác AQPB có :
AQ//BP (cmt)
AQ = BP (cmt)
=> AQPB là hình bình hành
c) Vì M là trung điểm AC
MN //BC
=> N là trung điểm AB
Xét ∆ABC có :
N là trung điểm AB
P là trung điểm BC ( AP là trung tuyến)
=> NP là đường trung bình ∆ABC
=> NP//AC
=> NP//AM ( M \(\in\)BC )
Xét ∆ABC có :
M là trung điểm AC
P là trung điểm BC
=> MP là đường trung bình ∆ABC
=> MP//AB
=> MP//NA ( N \(\in\)AB )
Xét tứ giác ANPM có :
MP//NA (cmt)
AM//NP (cmt)
=> ANPM là hình bình hành
Mà AP là phân giác BAC (cmt)
=> NAMP là hình thoi
Tứ giác ABCD là hình thang có : AC =BD(gt)
\(\Rightarrow\)Tứ giác ABCD là hình thang cân
- Bạn đọc lại dấu hiệu nhận biết hình thang cân nhé
- Chúc bạn học tốt!!!
Bài làm
A B C D
~ Vẽ như thế này mới thỏa mãn yêu cầu của đề bài. ~
@ Đưa nốt đề bài ra mik làm cho. @
# Học tốt #
Đề bài này: Cho hình thang ABCD (AB//CD), AB = BC và BC vuông góc BD
a) Chứng minh rằng AC vuông góc AD
b) Tính số đo các góc của hình thang
c) Gọi O là giao điểm của 2 đường chéo. Chứng minh rằng điểm O cách đều 2 cạnh bên và đáy lớn
Giúp mình nhé!
A B C D M E F K
a) Dễ thấy FM = AE (1) (t/c hình chữ nhật)
Lại có; Trong hình chữ vuông ABCD, hai đường chéo đồng thời là đường p/giác các góc của hình vuông nên
^ADB = 45o (Tắt tí nhé). Tam giác FDM có một góc vuông và một góc bằng 45o nên nó vuông cân.
Do đó: FM = FD (2). Từ (1) và (2) suy ra AE = FD rồi từ đó có \(\Delta\)CDF = \(\Delta\)DAE
Suy ra DE = CF.
b) Gọi giao điểm của DE, BF là K. Ta sẽ chứng minh C, M, K thẳng hàng, từ đó suy ra đpcm.
Thật vậy:(chưa nghĩ ra... bác nào nghĩ tiếp giúp cháu-_-)
Nghĩ ra rồi!!! Nhưng ko chắc đâu, chỗ vẽ đường phụ với chứng minh ý!
b) Qua B vẽ đoạn thẳng BN // KM(3) và bằng KC (4) (N thuộc nửa mặt phẳng bờ BF có chứa C)
Có ngay \(\Delta\)BCK = \(\Delta\)CBN => NC = BK(5). Từ (4) và (5) suy ra BN // KC (6)
Từ (3) và (6) suy ra K, M, C thẳng hàng (theo tiên đề Ơclit)
Bác nào check giúp với ạ!
bớt xàm đc ko tth?
Đặt \(a=\frac{x}{3};b=\frac{y}{3};c=\frac{z}{3}\)=> \(x+y+z=3\)
=> Cần Cm: \(x^2y+y^2z+z^2x\le4\)
Giả sử \(x\ge y\ge z\)
=> \(z\left(x-y\right)\left(y-z\right)\ge0\)
=> \(xyz+z^2y\ge y^2z+z^2x\)
Khi đó BĐT
<=> \(xyz+z^2y+x^2y\le4\)
<=> \(y\left(x^2+z^2+xz\right)\le4\)
<=>\(y.\left[\left(3-y\right)^2-xz\right]\le4\)
Do \(xz\ge0\)
=> \(y\left(3-y\right)^2\le4\)
<=> \(y^3-6y^2+9y-4\le0\)
<=> \(\left(y-4\right)\left(y-1\right)^2\le0\)luôn đúng do \(y< 3< 4\)
=> ĐPCM
Dấu bằng xảy ra khi \(x=2;y=1;z=0\)và các hoán vị
=> \(a=\frac{2}{3};b=\frac{1}{3};c=0\)và các hoán vị