cho A =(\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2024^2}\))
So sánh A với \(\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 72008 = (74)1004 = (\(\overline{...1}\))1004 = \(\overline{...1}\)
B = 23456 = (24)864 = \(\overline{...6}\)864 = \(\overline{...6}\)
C = 204208 = (2042)104 = \(\overline{...6}\)104 = \(\overline{...6}\)
D = 996 = (92)48 = \(\overline{...1}\) 48 = \(\overline{...1}\)
E = 20032007 = (20034)501.20033 = \(\overline{...1}\) .\(\overline{..7}\) = \(\overline{..7}\)
G = 20222022 = (20224)505.20222 = \(\overline{...6}\).\(\overline{...4}\) = \(\overline{...4}\)
A = 72008 = (74)1004 = ()1004 =
B = 23456 = (24)864 = 864 =
C = 204208 = (2042)104 = 104 =
D = 996 = (92)48 = 48 =
E = 20032007 = (20034)501.20033 = . =
G = 20222022 = (20224)505.20222 = . =