tìm x,y nguyên tm x4+y3=xy3+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nghiện garena ff à cho xin kb nick được ko ạ có thể ghi số id
Với x, y, z >0, Có: \(x+y+z\ge3\sqrt[3]{xyz}=3\)
=> Đặt: x + y+z =t => \(t\ge3\)
\(A=\frac{x^2}{1+x}+\frac{y^2}{1+y}+\frac{z^2}{1+z}\ge\frac{\left(x+y+z\right)^2}{3+x+y+z}\)
\(=\frac{t^2}{t+3}=t-3+\frac{9}{t+3}\)
\(=\left(\frac{t+3}{4}+\frac{9}{t+3}\right)+\frac{3\left(t+3\right)}{4}-6\ge2\sqrt{\frac{t+3}{4}.\frac{9}{t+3}}+3.\frac{\left(3+3\right)}{4}-6\)
\(=2.\frac{3}{2}+\frac{9}{2}-6=\frac{3}{2}\)
"=" xảy ra <=> x = y = z =1
\(x^3-y^3-36xy\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)-36xy\)
\(=12^3+36xy-36xy\)
\(=1728\)
\(M=\frac{2}{xy}+\frac{3}{x^2+y^2}\)
\(=3\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{1}{2xy}\)
\(\ge3\cdot\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=12+2=14\)
Dấu "=" xảy ra tại \(x=y=\frac{1}{2}\)
Bài nào đấy hải ơi .Trả lời tao bài 5 đi tao đăng rồi đấy tên là Lưng
Bài 5 ntn