Cho đoạn thẳng AB =5cm. Lấy C,D nằm giữa 2 điểm A và B sao cho AC+BD= 8cm.
a.CMR điểm D nằm giữa 2 điểm A và C.
b.Tính độ dài đoạn thẳng CD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lùi vô hạn đây rồi:))
G/s \(\left(x;y;z;t\right)=\left(x_1;y_1;z_1t_1\right)\) là 1 nghiệm nguyên của phương trình
Khi đó ta có: \(8x_1^4+4y_1^4+2z_1^4=t_1^4\) (1)
Vì VT(1) chẵn => t14 chẵn => t1 chẵn => Đặt \(t_1=2t_2\left(t_2\inℤ\right)\)
Khi đó PT(1) trở thành: \(8x_1^4+4y_1^4+2z_1^4=16t_2^4\Leftrightarrow4x_1^4+2y_1^4+z_1^4=8t_2^4\) (2)
Tương tự khi đó z1 chẵn => Đặt \(z_1=2z_2\left(z_2\inℤ\right)\)
Khi đó PT(2) trở thành: \(4x_1^4+2y_1^4+16z_2^4=8t_2^4\Leftrightarrow2x_1^4+y_1^4+8z_2^4=4t_2^4\) (3)
=> y1 chẵn => Đặt \(y_1=2y_2\left(y_2\inℤ\right)\) Khi đó PT (3) trở thành:
\(2x_1^4+16y_2^4+8z_2^4=4t_2^4\Leftrightarrow x_1^4+8y_2^4+4z_2^4=2t_2^4\) (4)
=> x1 chẵn => Đặt \(x_1=2x_2\left(x_2\inℤ\right)\) Khi đó PT (4) trở thành:
\(16x_2^4+8y_2^4+4z_2^4=2t_2^4\Leftrightarrow8x_2^4+4y_2^4+2z_2^4=t_2^4\) (5)
Từ đó ta lại có: \(\left(x;y;z;t\right)=\left(x_2;y_2;z_2;t_2\right)\) cũng là 1 nghiệm của PT
Cứ như vậy đến một lúc nào đó \(\left(x;y;z;t\right)=\left(x_n;y_n;z_n;t_n\right)\) cũng là 1 nghiệm của PT
(Với n là số tự nhiên, \(\left(x_n;y_n;z_n;t_n\right)=\left(\frac{x_1}{2^{n-1}};\frac{y_1}{2^{n-1}};\frac{z_1}{2^{n-1}};\frac{t_1}{2^{n-1}}\right)\) và n tùy ý)
Khi đó ta thấy PT chỉ có 1 nghiệm duy nhất thỏa mãn tính vô hạn của phương trình đó là: \(x=y=z=t=0\)
Vậy x = y = z = t = 0
Giả sử phương trình có nghiệm \(\left(x_0,y_0,z_0,t_0\right)\).
Ta có: \(8x_0^4+4y_0^4+2z_0^4=t_0^4\)
có \(VT⋮2\Rightarrow t_0^4⋮2\Rightarrow t_0⋮2\Rightarrow t_0=2t_1\)
\(8x_0^4+4y_0^4+2z_0^4=\left(2t_1\right)^4=16t_1^4\)
\(\Leftrightarrow8t_1^4-4x_0^4-2_0^4=-z_0^4\)
có \(VT⋮2\Rightarrow z_0^4⋮2\Rightarrow z_0⋮2\Rightarrow z_0=2z_1\)
\(8t_1^4-4x_0^4-2y_0^4=-z_0^4=-\left(2z_1\right)^4=-16z_1^4\)
\(\Leftrightarrow8z_1^4+4t_1^4-2x_0^4=y_0^4\)
có \(VT⋮2\Rightarrow y_0^4⋮2\Rightarrow y_0⋮2\Rightarrow y_0=2y_1\)
\(8z_1^4+4t_1^4-2x_0^4=y_0^4=\left(2y_1\right)^2=16y_1^4\)
\(\Leftrightarrow-8y_1^4+4z_1^4+2t_1^4=x_0^4\)
có \(VT⋮2\Rightarrow x_0^4⋮2\Rightarrow x_0⋮2\Rightarrow x_0=2x_1\)
\(-8y_1^4+4z_1^4+2t_1^4=x_0^4=\left(2x_1\right)^4=16x_1^4\)
\(\Leftrightarrow8x_1^4+4y_1^4-2z_1^4=t_1^4\)
có \(VT⋮2\Rightarrow t_1^4⋮2\Rightarrow t_1⋮2\Rightarrow t_2=2t_1\)
Cứ tiếp tục như trên. Nếu \(\left(x_0,y_0,z_0,t_0\right)\)là một nghiệm thì \(\left(x_1,y_1,z_1,t_1\right)\)cũng là một nghiệm.
Như vậy \(x,y,z,t\)chia hết cho \(2^k\)với \(k\)bất kì. Điều này chỉ đúng với \(x=y=z=t=0\).
\(AB^2=AH^2+HB^2=12^2+5^2=13^2\)
\(AC^2=AH^2+HC^2=16^2+5^2=17^2\)
Xét \(\Delta ABH\)vuông tại H \(\Rightarrow BH^2+AH^2=AB^2\)( định lý Pytago )
\(\Rightarrow AB^2=AH^2+18^2=AH^2+324\)
Xét \(\Delta ACH\)vuông tại H \(\Rightarrow HC^2+AH^2=AC^2\)( định lý Pytago )
\(\Rightarrow AC^2=AH^2+32^2=AH^2+1024\)
Xét \(\Delta ABC\)vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)( định lý Pytago )
\(\Rightarrow AH^2+324+AH^2+1024=\left(BH+CH\right)^2\)
\(\Leftrightarrow2AH^2+1348=\left(18+32\right)^2\)
\(\Leftrightarrow2AH^2+1348=50^2=2500\)
\(\Leftrightarrow2AH^2=1152\)\(\Leftrightarrow AH^2=576\)
\(\Rightarrow AC^2=576+1024=1600\)\(\Rightarrow AC=40\)(cm)
Vậy \(AC=40cm\)
\(\Rightarrow AC=5\sqrt{46}\)( cm )
a) Ta có: \(AB^2+AC^2=6^2+8^2=100=10^2=BC^2\)nên theo định lý Pythagore đảo thì tam giác \(ABC\)là tam giác vuông.
b) \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.6.8=24\left(cm^2\right)\)
c) \(AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=6,8\left(cm\right)\)
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=3,6\left(cm\right)\)
\(CH=BC-BH=10-3,6=6,4\left(cm\right)\)
Kẻ \(AH\perp BC\)
Xét \(\Delta ABH\)vuông tại H có \(\widehat{B}=60^o\)\(\Rightarrow\widehat{BAH}=90^o-60^o=30^o\)
Áp dụng nhận xét: trong 1 tam giác vuông, cạnh đối diện với góc \(30^o\)bằng \(\frac{1}{2}\)cạnh huyền
Ta có: \(\Delta ABH\)vuông tại H có \(\widehat{BAH}=30^o\)
\(\Rightarrow BH=\frac{1}{2}AB=\frac{1}{2}.5=2,5\)( cm )
\(\Rightarrow CH=BC-BH=8-2,5=5,5\)( cm )
Xét \(\Delta ABH\)vuông tại H \(\Rightarrow AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2=AB^2-BH^2=5^2-2,5^2=18,75\)
Xét \(\Delta ACH\)vuông tại H \(\Rightarrow AH^2+HC^2=AC^2\)
\(\Rightarrow AC^2=18,75+5,5^2=18,75+30,25=49\)
\(\Rightarrow AC=7cm\)
Vậy \(AC=7cm\)
câu a Do tam giác AFE có AH vừa là tia phân giác vừa là đường cao nên AFE cân tại A
b. Do KB song song với FE mà tam giác AFE cân tại A nên AKB cũng cân tại A
do đó KF=KA-AF=AB-AE=BE do đó ta có đpcm
c. DO FM//KB mà M lại là trung điểm của BC nên F là trung điểm CK do đó ta có
\(AC+AB=AC+AK=AF-FC+AF+KF=2AF=2AE\)
a) Giả sử \(D\)không nằm giữa 2 điểm \(A\)và \(C\).
\(8=AC+BD\le CB=5\)(vô lí).
Do đó \(D\)nằm giữa 2 điểm \(A\)và \(C\).
b) \(AC+BD=AD+DC+BD=\left(AD+BD\right)+CD=AB+CD\)
\(\Rightarrow CD=AC+BD-AB=8-5=3\left(cm\right)\).