Cho \(B\left(n-2;2n-1\right)\)với \(n\in R\). Chứng minh B luôn di động trên đường thẳng cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
Ta thấy phương trình y=a|x| đi qua điểm A (-3;1) nên -> y=1/3 |x| (y>0) -> để đường thẳng y=m cắt đồ thị y=1/3 |x| thì m>0
Xét tam giác APQ, ta có diện tích tam giác APQ là:
S APQ= 1/2 PQ . (m-1) =5
-> PQ. (m-1)=10 (1)
Điểm P, Q cắt đồ thị y=1/3 |x| nên -> tại điểm P, Q ta có: |xP| =3 yP và |xQ| =3 yQ
Giả sử P là điểm có x>0 và Q là điểm có x<0;
PQ= 2XP =2.3.yP =6m,
thay vào PT (1), ta có:
6m. (m-1) =10
-> m (m-1)= 5/3
-> m^2 -m -5/3=0
-> m=(1+ spr(23/3))/2 hoặc m= (1- spr(23/3))/2 <0 (loại)
Vậy m= (1+ \(\sqrt{\frac{23}{3}}\))/2
Hi Bạn !
Vì điểm A(-3,1) -> YA=1.
Vì đường cao của tam giác APQ chỉ tính khoảng cách từ điểm A đến đường cạnh PQ nên mình phải lấy chiều cao tam giác là:
chiều cao = (YP-1)= YQ-1)=m-1
Kẻ \(DH\perp BC\) tại H
Ta có: \(\hept{\begin{cases}AB\perp AC\\EC\perp AC\end{cases}\Rightarrow AB//CE\Rightarrow\widehat{ABD}=\widehat{BEC}}\)
\(\Rightarrow\widehat{BEC}=\widehat{EBC}\left(=\widehat{ABD}\right)\)
=> tam giác BEC cân tại C
=> BC=CE
Tam giác BDA = TAM GIÁC BDH => AD=DH
Mà DH<DC (vì DH vuông góc với HC)
Áp dụng định lý Pytago vào tam giác vuông ta có:
\(BD^2=AB^2+AD^2;DE^2=CE^2+CD^2\)
Ta có: AB<BC=CE
VÀ AD<DC(DH<DC)
\(\Rightarrow BD^2< DE^2\Rightarrow BD< DE\)
Vậy chu vi tam giác ABD< chu vi tam giác CDE (đpcm)
\(\frac{8x-2y+1}{24y}=\frac{8x-2}{3}=\frac{3-2y}{5}=\frac{8x-2+3-2x}{3+5}=\frac{8x-2y+1}{8}\)
Suy ra \(24y=8\Leftrightarrow y=\frac{1}{3}\).
Với \(y=\frac{1}{3}\): \(\frac{8x-2}{3}=\frac{3-2.\frac{1}{3}}{5}=\frac{\frac{7}{3}}{5}=\frac{7}{15}\Leftrightarrow x=\frac{17}{40}\).
Bài 1 : Ta có : \(\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{3}=\frac{y}{4}\)
Đặt : \(x=3k;y=4k\)
hay \(D=\frac{12k-20k}{9k+16k}=\frac{-8k}{25k}=\frac{-8}{25}\)
Bài 2 :
a, ta có : \(\left|2x-1\right|=\frac{3}{2}\)
TH1 : \(2x-1=\frac{3}{2}\Leftrightarrow2x=\frac{5}{2}\Leftrightarrow x=\frac{5}{4}\)
TH2 : \(2x-1=-\frac{3}{2}\Leftrightarrow2x=-\frac{1}{2}\Leftrightarrow x=-\frac{1}{4}\)
* Với x = 5/4 ta được : \(C=4.\frac{5}{4}+3=8\)
* Với x = -1/4 ta được : \(C=4.\left(-\frac{1}{4}\right)+3=2\)
b, Ta có C = -5/2 hay \(4x+3=-\frac{5}{2}\Leftrightarrow4x=-\frac{11}{2}\Leftrightarrow x=-\frac{11}{8}\)
Vậy với x = -11/8 thì C = -5/2
Giả sử \(B\left(n-2;2n-1\right)\)luôn thuộc đường thẳng \(\left(d\right):y=ax+b\).
Giờ ta sẽ đi xác định đường thẳng đó.
Vì \(B\in\left(d\right)\Rightarrow2n-1=a\left(n-2\right)+b\)(đúng với mọi \(n\))
\(\Leftrightarrow\left(a-2\right)n+b-2a+1=0\)(đúng với mọi \(n\))
\(\Leftrightarrow\hept{\begin{cases}a-2=0\\b-2a+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\)
Do đó \(B\left(n-2,2n-1\right)\)luôn thuộc đường thẳng \(y=2x+3\). Ta có đpcm.