K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)

\(=4-4m+4=-4m+8\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>-4m+8>0

=>-4m>-8

=>m<2

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)

\(x_1^2+x_2^2-3x_1x_2=2m^2+\left|m+3\right|\)

=>\(\left(x_1+x_2\right)^2-5x_1x_2=2m^2+\left|m+3\right|\)

=>\(2m^2+\left|m+3\right|=2^2-5\left(m-1\right)\)

=>\(2m^2+\left|m+3\right|=4-5m+5=-5m+9\)

=>\(2m^2+\left|m+3\right|+5m-9=0\)(1)

TH1: -3<=m<2

(1) sẽ trở thành \(2m^2+m+3+5m-9=0\)

=>\(2m^2+6m-6=0\)

=>\(m^2+3m-3=0\)

=>\(\left[{}\begin{matrix}m=\dfrac{-3+\sqrt{21}}{2}\left(nhận\right)\\m=\dfrac{-3-\sqrt{21}}{2}\left(loại\right)\end{matrix}\right.\)

TH2: m<-3

(1) sẽ trở thành \(2m^2-m-3+5m-9=0\)

=>\(2m^2+4m-12=0\)

=>\(m^2+2m-6=0\)

=>\(\left(m+1\right)^2=7\)

=>\(\left[{}\begin{matrix}m=\sqrt{7}-1\left(loại\right)\\x=-\sqrt{7}-1\left(nhận\right)\end{matrix}\right.\)

1: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI\(\perp\)CD

Xét tứ giác OIAM có \(\widehat{OIM}=\widehat{OAM}=90^0\)

nên OIAM là tứ giác nội tiếp

=>O,I,A,M cùng thuộc một đường tròn

2: ΔOAM vuông tại A

=>\(AO^2+AM^2=MO^2\)

=>\(AM^2=\left(\dfrac{3R}{2}\right)^2-R^2=\dfrac{5}{4}R^2\)

Xét (O) có

\(\widehat{MAC}\) là góc tạo bởi tiếp tuyến AM và dây cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{MAC}=\widehat{ADC}\)

Xét ΔMAC và ΔMDA có

\(\widehat{MAC}=\widehat{MDA}\)

\(\widehat{AMC}\) chung

Do đó: ΔMAC~ΔMDA

=>\(\dfrac{MA}{MD}=\dfrac{MC}{MA}\)

=>\(MC\cdot MD=MA^2=\dfrac{5}{4}R^2\)

AH
Akai Haruma
Giáo viên
12 tháng 5

Lời giải:
Gọi số kg nho và táo bác An mua lần lượt là $a$ và $b$ (kg). Theo bài ra ta có:

\(\left\{\begin{matrix} a+b=7\\ 65000a+50000b=410000\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=7\\ 13a+10b=82\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=4\\ b=3\end{matrix}\right.\)

Vậy bác An mua 4 kg nho và 3 kg táo.

11 tháng 5

cíu cíu mình với các bạn ơi

 

NV
11 tháng 5

Giả sử dây AB qua C \(\Rightarrow AB\le2R=20\)

Trong trường hợp \(AB\perp OC\), áp dụng định lý Pitago:

\(AB=2AC=2\sqrt{R^2-OC^2}=2\sqrt{19}\)

\(\Rightarrow2\sqrt{19}\le AB\le20\)

\(\Rightarrow AB=\left\{9;10;...;20\right\}\) có 12 dây có độ dài là số nguyên

11 tháng 5

a, \(x^2-\left(m+3\right)x+2\left(m+2\right)=0\)

\(\Delta=\left(m+3\right)^2-4\cdot2\left(m+2\right)=m^2-2m-7\)

Để phương trình có 2 nghiệm phân biệt thì: \(\Delta>0\Leftrightarrow m^2-2m-7>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m< 1-2\sqrt{2}\\m>1+2\sqrt{2}\end{matrix}\right.\)

b) \(7x^2+\left(m-1\right)x-m^2=0\) (??)

\(\Delta=\left(m-1\right)^2-4\cdot7\cdot\left(-m^2\right)=29m^2-2m+1\)

Để phương trình có 2 nghiệm phân biệt thì: \(\Delta>0\Leftrightarrow29m^2-2m+1>0\)

\(\Leftrightarrow29\left(m-\dfrac{1}{29}\right)^2+\dfrac{28}{29}>0\) (luôn đúng với mọi m)

Vậy phương trình có 2 nghiệm phân biệt với mọi m.

AH
Akai Haruma
Giáo viên
11 tháng 5

Lời giải:

$A=\sqrt{8}-\sqrt{2}=\sqrt{2^2.2}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}$

$B=\frac{a+2\sqrt{a}}{\sqrt{a}+2}=\frac{\sqrt{a}(\sqrt{a}+2)}{\sqrt{a}+2}=\sqrt{a}$

1: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

Xét tứ giác BCKH có \(\widehat{BCK}+\widehat{BHK}=90^0+90^0=180^0\)

nên BCKH là tứ giác nội tiếp

b: Xét ΔAHK vuông tại H và ΔACB vuông tại C có

\(\widehat{HAK}\) chung

Do đó: ΔAHK~ΔACB

=>\(\dfrac{AH}{AC}=\dfrac{AK}{AB}\)

=>\(AK\cdot AC=AH\cdot AB\)

Xét ΔBHK vuông tại H và ΔBDA vuông tại D có

\(\widehat{HBK}\) chung

Do đó: ΔBHK~ΔBDA

=>\(\dfrac{BH}{BD}=\dfrac{BK}{BA}\)

=>\(BH\cdot BA=BK\cdot BD\)

\(AK\cdot AC+BK\cdot BD\)

\(=AH\cdot AB+BH\cdot AB=AB\left(BH+AH\right)=AB^2=4R^2\)