Cho hình vuông ABCD trên cạnh BC lấy điểm M sao cho BM = BC/3, trên tia đối của tia CD lấy N sao cho CN = AD/2 . I là giao điểm của tia AM và BN. Chứng minh rằng 5 điểm A,B,I,C,D cùng cách đều 1 điểm
HELP!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác PAC,ta có:
{MP=MAOP=OC{MP=MAOP=OC
=>MP = 1212 AC
Tam giác PBC và AOB tương tự
=> Tam giác MNP đồng dạng với tam giác ABC
=> Chu vi tam giác MNP = 54325432 cm
LÀM LIỀU !!
Nối M với C ; B với P ; N với A
Xét tam giác OMC có : MP là đường trung tuyến ứng với cạnh OC
=> S MOP = S MCP = 1/2. S OMC ( t/c đường trung tuyến trong tam giác )
Xét tam giác AOC có : CM là đường trung tuyến ứng với cạnh OA
=> S OCM = S ACM = 1/2. S OAC ( t/c đường trung tuyến của tam giác )
=> S OMP = 1/4.S OAC
Tương tự CM được S ONP = 1/4 S OBC ; S OMN = 1/4. S OAB
=> S OMP + S OMN + S ONP = 1/4. S OAC + 1/4. S OAB + 1/4 . S OMN
=> S MNP = 1/4. S ABC
=> S MNP / S ABC = 1/4
A B C D
Kẻ tia phân giác trong ^A cắt BC tại D
=> ^BAC = 2. ^DAC
=> ^ABC = ^DAC
xét \(\Delta\)ABC và \(\Delta\)DAC có:
^ABC = ^DAC ( chứng minh trên )
^ACB = ^DCA
=> \(\Delta\)ABC ~ \(\Delta\)DAC
=> \(\frac{AC}{DC}=\frac{BC}{AC}\Rightarrow DC=\frac{AC^2}{BC}=\frac{36^2}{48}=27\)
=> BD = 48 - 27 = 21
Ta có: AD là phân giác ^BAC của \(\Delta\)ABC
=> Ta có tỉ lệ: \(\frac{AB}{AC}=\frac{DB}{DC}\Rightarrow\frac{AB}{36}=\frac{21}{27}\)
=> AB = 21.36:27 = 28 .
Đổi: \(1,5W=1,5J/s\); 1 ngày 1 đêm = 24 giờ = 86400 giây ; \(40kg=400N\)
Quả tim người đẩy máu chạy trong cơ thể là 1,5J/s hay trong 1 giây quả tim tạo ra một công là 1,5 J
\(\Rightarrow\)Trong 1 ngày 1 đêm quả tim thực hiện được 1 công là: \(A=86400.1,5=129600\left(J\right)\)
Công này có thể nâng 1 hs nặng 40kg lên cao: \(s=\frac{A}{F}=\frac{129600}{400}=324\left(m\right)\)
Ta có :
\(x^6+3x^5-2x^4+7x^3-2x^2+3x+1\)
\(=x^6-x^5+x^4+4x^5-4x^4+4x^3+x^4-x^3+x^2+4x^3-4x^2+4x+x^2-x+1\)
\(=x^4\left(x^2-x+1\right)+4x^3\left(x^2-x+1\right)+x^2\left(x^2-x+1\right)+4x\left(x^2-x+1\right)+\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^4+4x^3+x^2+4x+1\right)\)
We have:
\(E=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{2x^2+2-\left(x+1\right)^2+\left(x+1\right)^2}{\left(x+1\right)^2}\)
\(=\frac{x^2-2x+1}{\left(x+1\right)^2}+1=\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+1\ge1\)
=> Min E = 1 <=> x - 1 = 0 <=> x = 1.
A B C D P I a a a a/2 2a/3 a/3 3a/2
Kéo dài AM cắt DC tại P
VÌ ABCD là hình vuông
=> Đặt: AB = BC = CD = DA = a
=> BM = \(\frac{a}{3}\); CN = \(\frac{a}{2}\)
=> MC = BC - BM = \(\frac{2a}{3}\)
+) \(\Delta\)ABM ~ \(\Delta\)PCM ( tự chứng minh )
=> \(\frac{AB}{PC}=\frac{BM}{MC}\)
=> \(\frac{a}{PC}=\frac{\frac{a}{3}}{\frac{2a}{3}}=\frac{1}{2}\)=> PC = 2a
=> PN = PC - NC = 2a - \(\frac{a}{2}\)= \(\frac{3a}{2}\)
+) \(\Delta\)ABI ~ \(\Delta\)PNI ( tự chứng minh )
=> \(\frac{AB}{PN}=\frac{AI}{IP}\)
=> \(\frac{AI}{PI}=\frac{a}{\frac{3a}{2}}=\frac{2}{3}\)(1)
mà \(AI+PI=AP=\sqrt{AD^2+DP^2}=\sqrt{a^2+9a^2}=\sqrt{10}a\)( DP = DC + CP = 3a) (2)
Từ (1); (2) => \(\hept{\begin{cases}PI=\frac{3\sqrt{10}}{5}\\AI=\frac{2\sqrt{10}}{5}\end{cases}}\)
=> \(\frac{IP}{CP}=\frac{\frac{3\sqrt{10}a}{5}}{2a}=\frac{3}{\sqrt{10}}\)
\(\frac{CP}{MP}=\frac{2a}{\sqrt{MC^2+CP^2}}=\frac{2a}{\frac{2\sqrt{10}}{3}a}=\frac{3}{\sqrt{10}}\)
Xét \(\Delta\)ICP và \(\Delta\)CMP có:
\(\frac{IP}{CP}=\frac{CP}{MP}\)( = \(\frac{3}{\sqrt{10}}\))
và ^IPC = ^CPM
=> \(\Delta\)ICP ~ \(\Delta\)CPM
=> ^CIP = ^MCP = 90\(^o\)
=> ^AIC = 90\(^o\)
Gọi O là giao điểm của AC và BD => O cách đều 4 điểm A, B, C, D (1)
Xét \(\Delta\)AIC vuông tại I có: O là trung điểm AC
=> O I = OA = OC (2)
Từ (1); (2)
=> O cách đều 5 điểm A, B, C, D, I
thanks