Giải hệ phương trình: \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
hpt \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+3\left(x+y\right)-4=0\\xy\left(x+y\right)=48\end{cases}.}\)
Đặt a=x+y; b=xy
Vì x=0; y=0 ko là nghiệm của hệ nên b khác 0
Khi đó hệ pt trở \(\hept{\begin{cases}a^2-2b+3a-4=0\left(1\right)\\ab=48\left(2\right)\end{cases}}\)
Từ phương trình (2) biểu diễn a theo b, thay vào pt (1) để tìm.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\hept{\begin{cases}x^2+2xy-2x-2y+1=0\left(1\right)\\3x^2+xy+4x-y-7=0\left(2\right)\end{cases}}\)
\(\Rightarrow2x^2-xy+6x+y-8=0\)
\(\Leftrightarrow2x^2+\left(6-y\right)+y-8=0\)
Ta có: \(\Delta=\left(6-y\right)^2-4\cdot2\cdot\left(y-8\right)=36-12y+y^2-8y+64=\left(y-10\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{y-6+y-10}{4}=\frac{y-8}{2}\Rightarrow y=2x+8\\x=\frac{y-6-y+10}{4}=1\end{cases}}\)
Với từng trường hợp thay vào pt (1) hoặc (2) sẽ ra
![](https://rs.olm.vn/images/avt/0.png?1311)
Mọi người nhớ Cmt coi đúngko nhé.
Do 2 đường thẳng y=ax+b và y'=a'x+b' cắt nhau tại 1 điểm trên trục hoành nên y = 0
Ta có y = ax+b <=> 0 = ax+b <=> -ax = b <=> x = -b/a (1)
Tương tự ta có : x = -b'/a' (2)
Từ (1) và (2) ta có : -b/a = -b'/a' hay b=a = b'/a'
=> ba'=b'a.Đúng ko zậy mina ?
Chỗ hay b= a =b'/a' là b/a = b'/a' nhé mn.
Viết nhầm.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ko co kien thuc ak
Toán lớp 9 thì bạn qua bên lazi hoặc học 24h
Nha
Học tốt