Cho tam giác ABC AM là đường trung tuyến G là trọng tâm. Biết AM=12 cm.Tính AG
Vẽ hình luôn nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M(x) = 2x - 6
M(x) = 0 <=> 2x - 6 = 0
<=> 2x = 6
<=> x = 3
Vậy nghiệm của đa thức là 3
N(x) = x2 + 2x + 2020
N(x) = x2 + 2x + 1 + 2019
= ( x + 1 )2 + 2019
Ta có \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2019\ge2019\)
=> N(x) vô nghiệm
a)\(M\left(x\right)=2x-6\)
ta có \(M\left(x\right)=0\)
hay\(2x-6=0\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
vậy nghiệm của đa thức m(x) là 3
b) \(N\left(x\right)=x^2+2x+2020\)
ta có\(N\left(x\right)=0\)
hay\(x^2+2x+2020=0\)
\(\Leftrightarrow x^2+2x=-2020\)
\(\Leftrightarrow x.x+2x=-2020\)
\(\Leftrightarrow x\left(x+2\right)=-2020\)
còn lại tích của -2020 là bao nhiêu cậu thay vào
a, tự làm
b, 4x3 -x
Ta có:x(4x2-1)=0
=>x=0 hoặc 4x2-1=0
=>x=0 hoặc 4x2=1
=>x=0 hoặc \(x^2=\frac{1}{4}\)
=>x=0 hoặc \(x=\sqrt{\frac{1}{4}}\)
=>x=0 hoặc \(x=\frac{1}{2}\)
Vậy đa thức có 2 nghiệm là x= 0 và \(x=\frac{1}{2}\)
a) P(x) + Q(x) = x4 - 3x3 + x2 + 5x + 2 + 3x3 + 5x + 4
= x4 + ( 3x3 - 3x3 ) + x2 + ( 5x + 5x ) + ( 4 + 2 )
= x4 + x2 + 10x + 6
P(x) - Q(x) = ( x4 - 3x3 + x2 + 5x + 2 ) - ( 3x3 + 5x + 4 )
= x4 - 3x3 + x2 + 5x + 2 - 3x3 - 5x - 4
= x4 + ( -3x3 - 3x3 ) + x2 + ( 5x - 5x ) + ( 2 - 4 )
= x4 - 6x3 + x2 - 2
b) H(x) = 4x3 - x
H(x) = 0 <=> 4x3 - x = 0
<=> x(4x2 - 1 ) = 0
<=> x = 0 hoặc 4x2 - 1 = 0
* 4x2 - 1 = 0
4x2 = 1
x2 = 1/4
x = \(\pm\sqrt{\frac{1}{2}}\)
Vậy nghiệm của đa thức là 0 và \(\pm\sqrt{\frac{1}{2}}\)
Trước tiên ta phát biểu và chứng minh một bổ đề:
Bổ đề. "Cho tam giác ABCABC và một điểm MM nằm trong tam giác. Chứng minh rằng MB+MC<AB+ACMB+MC<AB+AC."
Chứng minh. Kéo dài BMBM về phía MM cắt cạnh ACAC tại điểm NN. Theo bất đẳng thức tam giác ta có:
$$AN+AB>BN=BM+MN\\
MN+NC>MC$$
Cộng theo vế các bất đẳng thức trên và trừ đi hai vế cho MNMN ta thu được bất đẳng thức cần chứng minh.
Ta xét hai trường hợp:
a) Tam giác ABCABC có ba góc nhỏ hơn 120∘120∘.
Ta dựng tam giác đều BCDBCD ở phía ngoài tam giác ABCABC.
Gọi TT là giao điểm của đường tròn ngoại tiếp tam giác BCDBCD với ADAD. Dễ dàng chứng minh rằng TT nhìn ba cạnh của tam giác ABCABC dưới ba góc bằng nhau. Ta chứng minh rằng với một điểm MM tùy ý ở trong tam giác ABCABC khác điểm TT thì ta cóMA+MB+MC>TA+TB+TCMA+MB+MC>TA+TB+TC
Thật vậy ta có MB+MC≥MDMB+MC≥MD và do đóMA+MB+MC≥MA+MD≥AD (1)MA+MB+MC≥MA+MD≥AD (1)
Mặt khác TA+TB+TC=TA+TDTA+TB+TC=TA+TD, do TT nằm trên đường tròn ngoại tiếp tam giác đều BCDBCD. Và cuối cùng làTA+TB+TC=TA+TD=AD (2)TA+TB+TC=TA+TD=AD (2)
Từ (1)(1) và (2)(2) suy raMA+MB+MC≥TA+TB+TCMA+MB+MC≥TA+TB+TC
Đẳng thức xảy ra khi M≡TM≡T (điểm TT được gọi là điểm Toricenli của tam giác ABCABC).
b) Tam giác ABCABC có một góc, chẳng hạn ˆB≥120∘B^≥120∘.
Dựng tam giác đều BCDBCD ở phía ngoài của tam giác ABCABC.
Do ˆB≥120∘B^≥120∘ nên với mọi điểm MM tùy ý ở trong tam giác ABCABC, điểm BB nằm trong tam giác MDAMDA.
Ta có MB+MC≥MDMB+MC≥MD. Mặt khác theo bổ đề trên đối với tam giác MDAMDA ta có MA+MD≥BA+BDMA+MD≥BA+BD.
Từ đó ta cóOA+OB+OC≥OA+OD≥BA+BD=BA+BCOA+OB+OC≥OA+OD≥BA+BD=BA+BC
Như vậy khi M≡BM≡B thì tổng khoảng cách từ MM đến các đỉnh còn lại của tam giác ABCABC là nhỏ nhất. Tóm lại trong trường hợp tam giác ABCABC có một đỉnh không nhỏ hơn 120∘120∘ thì chỉnh đỉnh này là đỉnh cần tìm.
Tự vẽ hình
a,AD ĐL py-ta-go vào \(\Delta\)vuông ABC có
\(BC^2=AB^2+AC^2\)
\(x^2=9^2+12^2\)
\(x^2=81+144\)
\(x^2=225\)
\(x=\sqrt{225}=15\)
b,Xét \(\Delta BAN\)và \(\Delta CDN\)có:
BN=DN
\(\widehat{BNA}=\widehat{DNC}\)
NA=NC
\(\Rightarrow\Delta BNA=\Delta CDN\left(c.g.c\right)\)
c,Vì \(\Delta BNA=\Delta CND\left(cmt\right)\)
\(\Rightarrow\widehat{BAN}=\widehat{DCN}\)(2 cạnh t.ư)
Mà 2 góc này ở VTSLT
\(\Rightarrow CD//AB\)
Theo tính chất đường trung tuyến ta có
\(\frac{AG}{AD}=\frac{GB}{BE}=\frac{2}{3}\)
\(\Leftrightarrow\frac{AG}{12}=\frac{GB}{9}=\frac{2}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{AG}{12}=\frac{2}{3}\\\frac{GB}{9}=\frac{2}{3}\end{cases}\Rightarrow\orbr{\begin{cases}AG=8\left(cm\right)\\GB=6\left(cm\right)\end{cases}}}\)
Vì \(G\in BE\)
\(\Rightarrow BG+GE=BE\)
\(\Rightarrow GE=9-6=3\left(cm\right)\)
Vậy \(AG=8cm\) và \(GE=3cm\)
Bác lm dài thế >: t/c 3 đg trung tuyến áp dụng luôn cx đc mà.
Theo t/c 3 đường trung tuyến ta có :
\(AG=\frac{2}{3}AD=\frac{2}{3}.12=\frac{24}{3}=8\left(cm\right)\)
\(GE=\frac{1}{3}BE=\frac{1}{3}.9=\frac{9}{3}=3\left(cm\right)\)
hình tự kẻ nghen:33333
a) áp dụng định lý pytago vào tam giác vuông ABC
=> AB^2+AC^2=BC^2
=> BC^2-AB^2=AC^2
=> AC^2=5^2-4^2=25-16=9
=> AC=3 (AC>0)
b) xét tam giác BAE và tam giác BHE có
B1= B2(gt)
BE chung
BAE=BHE(=90 độ)
=> tam giác BAE= tam giác BHE (ch-gnh)
c) ta có AC vuông góc với BK
HK vuông góc với BC
và AC,HK,BE cùng giao nhau tại E
=> BE vuông góc với KC ( 3 đường cao trong tam giác cùng đi qua một điểm )
Tự vẽ hình nha !!!
a) Áp dụng định lý Py-ta-go ta có
AB2 + AC2 = BC2
=> 82 + 62 = BC2
=> BC = 10 cm
b) Ta có BA = AD
=> AC là trung tuyến của BD
Vì \(AC\Omega BK=\left\{E\right\}\)
=> E là trọng tâm của tam giác BDC
=> \(\frac{EC}{AC}=\frac{2}{3};\frac{AE}{AC}=\frac{1}{3}\)mà AC = 6 cm
=> EC = 4 cm ; AE = 2 cm
c) Xét tam giác BAC và tam giác DAC có
\(\hept{\begin{cases}BA=AD\\\widehat{CAB}=\widehat{CAD=90^{\text{o}}}\\AC\text{ chung}\end{cases}}\Rightarrow\Delta BAC=\Delta DAC\left(c.g.c\right)\)
=> BC = DC (cạnh tương ứng)
# Hình bạn tự vẽ nha
AM là đường trung tuyến
G là trọng tâm
=> AG = 2/3 AM ( tính chất 3 đường trung tuyến )
=> AB = 2/3 . 12 = 8 ( cm )