K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2018

\(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{3x^2+6x+9}{3\left(x+2\right)^2}=\frac{\left(x^2-2x+1\right)+\left(2x^2+8x+8\right)}{3\left(x+2\right)^2}\)

\(=\frac{\left(x-1\right)^2+2\left(x+2\right)^2}{3\left(x+2\right)^2}=\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}+\frac{2}{3}\ge\frac{2}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy GTNN của A là \(\frac{2}{3}\Leftrightarrow x=1\)

10 tháng 12 2018

Thiếu ĐKXĐ \(x\ne-2\)

10 tháng 12 2018

Ta có: \(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)

\(\Rightarrow\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\)

\(\Rightarrow x-3+x+5=8\)

\(\Rightarrow2x=6\Rightarrow x=3\)

10 tháng 12 2018

\(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\Leftrightarrow\left|x-3\right|+\left|x+5\right|=8\) (1)

Nếu \(x< -5\) thì (1) trở thành: 

      \(3-x+\left(-x-5\right)=8\Leftrightarrow-2x-2=8\Leftrightarrow x=-5\) (loại)

-Nếu \(-5\le x< 3\) thì (1) trở thành:

       \(3-x+x+5=8\Leftrightarrow8=8\)

-Nếu \(x>3\) thì (1) trở thành: 

        \(x-3+x+5=8\Leftrightarrow2x+2=8\Leftrightarrow x=3\) (thỏa mãn)

Vậy \(-5\le x\le3\)

10 tháng 12 2018

Từ gt \(\Rightarrow ab-ac-bc+c^2=c^2\)

        \(\Leftrightarrow ab=ac+bc\)

       \(\Leftrightarrow ab=c\left(a+b\right)\)

       \(\Leftrightarrow abc=c^2\left(a+b\right)\)

Bây giờ chỉ cần chứng minh ( a + b ) là số chính phương nx là xog !

Gọi \(ƯCLN\left(a-c;b-c\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}a-c⋮d\\b-c⋮d\end{cases}\Rightarrow}\left(a-c\right)-\left(b-c\right)⋮d\)

                            \(\Rightarrow a-b⋮d\)

Mà \(\left(a;b\right)=1\)

\(\Rightarrow d=1\)

Hay \(\left(a-c;b-c\right)=1\)

Mà \(\left(a-c\right)\left(b-c\right)=c^2\)là số chính phường

Nên a - c và b - c đều là số chính phương

Đặt \(\hept{\begin{cases}a-c=x^2\\b-c=y^2\end{cases}\left(x;y\inℕ\right)}\)

\(\Rightarrow x^2.y^2=\left(a-c\right)\left(b-c\right)\)

\(\Leftrightarrow x^2y^2=c^2\)

\(\Leftrightarrow xy=c\)( Do xy và c đều dương )

Ta có : \(\left(a-c\right)+\left(b-c\right)=x^2+y^2\)

\(\Leftrightarrow a+b-2c=x^2+y^2\)

\(\Leftrightarrow a+b=x^2+2c+y^2\)

\(\Leftrightarrow a+b=x^2+2xy+y^2\)

\(\Leftrightarrow a+b=\left(x+y\right)^2\)là số chính phương

Do đó : \(abc=c^2.\left(x+y\right)^2=\left(cx+cy\right)^2\)là số chính phương

Vậy .................