Cho x y z >0 thỏa mã xy+yz+xz=3 Cmr 1+3x/1+y^2 +1+3y/1+z^2 +1+3z/1+x^2>=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk a > 0
\(=\dfrac{4+4\sqrt{a}+a-a+6\sqrt{a}-9}{\sqrt{a}\left(2\sqrt{a}-1\right)}\\ =\dfrac{10\sqrt{a}-5}{\sqrt{a}\left(2\sqrt{a}-1\right)}\\ =\dfrac{5\left(2\sqrt{a}-1\right)}{\sqrt{a}\left(2\sqrt{a}-1\right)}\\ =\dfrac{5}{\sqrt{a}}\)
\(\sqrt{x-1}\le2\\ < =>0\le x-1\le4\\ < =>1\le x\le5\)
\(\sqrt{3x-2}=2-x\left(x\ge\dfrac{2}{3}\right)\\ < =>\left\{{}\begin{matrix}2-x\ge0\\3x-2=\left(2-x\right)^2=x^2-4x+4\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}-x\ge-2\\x^2-7x+6=0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}x\le2\\\left(x-6\right)\left(x-1\right)=0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}x\le2\\\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\end{matrix}\right.< =>x=1\left(TM\right)\)
\(\sqrt{3+2\sqrt{2}}\) + \(\sqrt{6-4\sqrt{2}}\)
= \(\sqrt{2+2\sqrt{2}+1}\) + \(\sqrt{4-4\sqrt{2}+2}\)
= \(\sqrt{\left(\sqrt{2}+1\right)^2}\) + \(\sqrt{\left(2-\sqrt{2}\right)^2}\)
= \(\sqrt{2}\) + 1 + 2 - \(\sqrt{2}\)
= 3
- Bổ sung đề: CMR \(\dfrac{1+3x}{1+y^2}+\dfrac{1+3y}{1+z^2}+\dfrac{1+3z}{1+x^2}\ge6\).
- Ta có: \(\dfrac{1+3x}{1+y^2}=\left(1+3x\right)-\dfrac{y^2\left(1+3x\right)}{1+y^2}\ge\left(1+3x\right)-\dfrac{y^2\left(1+3x\right)}{2y}=1+3x-\dfrac{y\left(1+3x\right)}{2}=1+3x-\dfrac{y}{2}-\dfrac{3xy}{2}\left(1\right)\)
- Tương tự, ta cũng có:
\(\dfrac{1+3y}{1+z^2}=1+3y-\dfrac{z}{2}-\dfrac{3yz}{2}\left(2\right)\), \(\dfrac{1+3z}{1+x^2}=1+3z-\dfrac{x}{2}-\dfrac{3zx}{2}\left(3\right)\)
- Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\), ta được:
\(\dfrac{1+3x}{1+y^2}+\dfrac{1+3y}{1+z^2}+\dfrac{1+3z}{1+x^2}\ge3+\dfrac{5}{2}\left(x+y+z\right)-\dfrac{3}{2}\left(xy+yz+zx\right)=3+\dfrac{5}{2}\left(x+y+z\right)-\dfrac{3}{2}.3=\dfrac{5}{2}\left(x+y+z\right)-\dfrac{3}{2}\left(4\right)\)
- Mặt khác: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)=3.3=9\Rightarrow x+y+z\ge3\left(5\right)\)
- Từ (4), (5) ta có:
\(\dfrac{1+3x}{1+y^2}+\dfrac{1+3y}{1+z^2}+\dfrac{1+3z}{1+x^2}\ge\dfrac{5}{2}.3-\dfrac{3}{2}=6\left(đpcm\right)\)
- Dấu "=" xảy ra khi \(x=y=z=1\)