CMR với mọi x ta có:
(x^2+2)^4+7(x^2+2)^3+5(x^2+2)^2-31x^2-92>=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này đơn giản thôi bạn, nhưng quan trọng là nó dài nên mình ko có hứng làm chi tiết:)
Ta có: \(VT-VP=\frac{\left(1019a-15b^2-1004c\right)^2+18117\left(b^2-c\right)^2}{1019}\ge0\)
Tự xét dấu bằng nốt:)
Có: \(5x^4+10x^2+2y^6+4y^3-6=0\)
<=> \(5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)
<=> \(5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)
Vì x, y nguyên => \(\left(x^2+1\right)^2;\left(x^3+1\right)^2\)là số chính phương
=> \(x^2+1=1\)
và \(y^3+1=2\)
Khi đó: \(\hept{\begin{cases}x=0\\y=1\end{cases}}\)thử lại thỏa mãn.
Để P max=> x2+2x+2 min
-Có x2+2x+2>=(x+1)2+1
Dấu"=" xảy ra <=> x=-1
=> MaxP=5/1=5 tại x=-1
Bài giải
\(P=\frac{5}{x^2+2x+2}\) đạt GTLN khi \(x^2+2x+2\) đạt GTNN
Do \(x^2+2x+2=\left(x+1\right)^2+1\ge1\) Dấu " = " xảy ra khi ( x + 1 )2 + 1 = 1 => ( x + 1 ) 2 = 0 => x + 1 = 0 => x = - 1
\(\Rightarrow\text{ }P\le\frac{5}{1}=5\)
\(\Rightarrow\text{ }Max\text{ }P=5\text{ khi }x=-1\)
Đặt x2+2 =a ta có :
a4 + 7a3 + 5a2 - 31a - 30
= a4 + a3 + 6a3 + 6a2 - a2 - a -30a - 30
= (a+1)(a3+6a2-a-30)
= (a+1)(a3+5a2+a2+5a-6a-30)
=(a+1)(a+5)(a2+a-6)
=(a+1)(a+5)(a2-2a+3a-6)
=(a+1)(a+5)(a-2)(a+3)
=(x2+3)(x2+7)(x2)(x2+5)
từng nhân tử lớn hơn không riêng x2 lớn hơn hoặc bằng 0 nên ta có đa thức trên lớn hơn hoặc bằng 0