Giải phương trình: \(x^3+\left(1-x^2\right)^{\frac{3}{2}}=x\sqrt{2-2x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bổ đề: Số lập phương bất kì khi chia cho 7 thì dư 0, 1, 6 (*)
+) Xét abc chia hết cho 7 thì hiển nhiên ta có điều phải chứng minh
+) Xét abc không chia hết cho 7 thì trong ba số a, b, c không có số nào chia hết cho 7 suy ra \(a^3,b^3,c^3\)không chia hết cho 7
Theo bổ đề (*) thì \(a^3,b^3,c^3\)chia 7 dư 1 hoặc 6
Có 3 số mà chỉ có 2 số dư nên theo nguyên lý Dirichlet thì có ít nhất hai số cùng số dư do đó hiệu của chúng chia hết cho 7
Vậy \(abc\left(a^3-b^3\right)\left(b^3-c^3\right)\left(c^3-a^3\right)⋮7\left(đpcm\right)\)
Một số lập phương khi chia cho 7 có số dư là 0, 1, hoặc 6. Nên nếu abc không chia hết cho 7 thì ít nhất 2 trong 3 số a^3, b^3, và c^3 phải cùng số dư khi chia cho 7.
Suy ra dpcm
Nếu n =3k, ta có n^4 +1 = (3n^3-2)k +2k +1chia hết cho 2n^3-2
Suy ra 2k+1 chia hết cho 3n^3-2, không có nghiệm.
Nếu n=3k+1, ta có n^4 +1 = (3n^3-2)k + n^3 + 2k +1chia hết cho 2n^3-2
Suy ra n=1
Tương tự cho TH n=3k+2...
Tổng quát ta có: Với \(n\inℕ\)ta có:
\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\left(n+1\right)-n}{\sqrt{n}+\sqrt{n+1}}\)
\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\)
Với \(n=2\)\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{3}}=\sqrt{3}-\sqrt{2}\)
Với \(n=3\)\(\Rightarrow\frac{1}{\sqrt{3}+\sqrt{4}}=\sqrt{4}-\sqrt{3}\)
...........................
Với \(n=79\)\(\Rightarrow\frac{1}{\sqrt{79}+\sqrt{80}}=\sqrt{80}-\sqrt{79}\)
\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+.....+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+......+\sqrt{80}-\sqrt{79}\)
\(=\sqrt{80}-\sqrt{2}=\sqrt{40.2}-\sqrt{2}=\sqrt{40}.\sqrt{2}-\sqrt{2}\)
\(=\sqrt{2}.\left(\sqrt{40}-1\right)>\sqrt{2}.\left(\sqrt{36}-1\right)\)
\(=\sqrt{2}.\left(6-1\right)=5\sqrt{2}>4\)( đpcm )
Thuật giải tam giác (tam giác vuông) là bài toán yêu cầu tìm số đo tất cả các cạnh và các góc của tam giác đó theo đơn vị đo hoặc theo biến a,b,c,...
Đối với giải một tam giác yếu tố bắt buộc cần phải biết số đo 1 cạnh của tam giác từ đó ta mới co thể giải được (tìm được các cạnh, các góc còn lại) của tam giác ấy
Khi biết 3 góc thì hiển nhiên là ta chưa thể giải được tam giác này nhé bạn
1111111111111111111
\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)
Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)
Là xong.
Đề: Dẫn 17,92 lít khí hidro đi qua ống sứ m gam , 1 oxit sắt FexOy nung nóng sau phản ứng thu được 2,4*10^23 phân tử nước và hỗn hợp X gồm 2 chất rắng nặng 28.4 g
Bài này làm gì có trong bất cứ đề văn nào . Cái này là bịa ra chứ gì.
Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)
Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)
\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)
Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)
\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)
\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)
\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)
Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1