S=1+\(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{144}}\)
chứng tỏ 22<S<33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải :
\(x^8+x+1\)
\(=x^8-x^5+x^5-x^2+x^2+x+1\)
\(=x^5\left(x^3-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^5\left(x-1\right)\left(x^2+x+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
Bài 2 xét x=0 => A =0
xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)
để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)
=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?
1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)
=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)
\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)
\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)
=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
=> M=0
Vậy M=0
Lời giải :
a) \(\sqrt{\left(0,1-\sqrt{0,1}\right)^2}\)
\(=0,1-\sqrt{0,1}\)
b) \(\sqrt{4-2\sqrt{3}}=\sqrt{3-2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
c) \(\sqrt{3+2\sqrt{2}}=\sqrt{2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
d) \(\sqrt{9-4\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}=\sqrt{\left(\sqrt{5}-2\right)^2}=\sqrt{5}-2\)
e) \(\sqrt{16-6\sqrt{7}}=\sqrt{9-2\cdot3\cdot\sqrt{7}+7}=\sqrt{\left(3-\sqrt{7}\right)^2}=3-\sqrt{7}\)
Ta trục căn thức ở mỗi số hạng của A sau đó khử liên tiếp đc : A = 11 - 1 = 10
Ta có : \(B=\frac{2}{2\sqrt{1}}+\frac{2}{2\sqrt{2}}+...+\frac{2}{2\sqrt{35}}\)
\(B=\frac{2}{\sqrt{1}+\sqrt{1}}+\frac{2}{\sqrt{2}+\sqrt{2}}+...+\frac{2}{\sqrt{35}+\sqrt{35}}\)
\(B>2\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{35}+\sqrt{36}}\right)\)
\(B>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{36}-\sqrt{35}\right)\)
\(B>2\left(6-1\right)=10\)
Vậy A < B
Rõ ràng p=2 hoặc p=3 thì không thỏa mãn yêu đều đề bài
Ta xét với p>3 khi đó p là số nguyên tố nên p-1 , p+1 phải chẵn nên cả 2 số này đều phải chia hết cho 2 . Mặt khác ta xét tiếp : trong 3 số tự nhiên liên tiếp p-1,p,p+1 thì hẳn phải có một số chia hết cho 3 . Nhưng đó không thể là p do p nguyên tố >3 . Vậy ta chỉ xét 2 trường hợp
*> TH1 : p-1 chia hết cho 3 thì vì p-1 có 6 ước số tự nhiên nên có tiếp 2 khả năng
1) p-1=2^2.3=12 => p=13 =>p+1=14 ( không thỏa mãn )
2) p-1=2.3^2=18=> p=19 =>p+1=20 ( thỏa mãn )
*> TH2 : p+1 chia hết cho 3 thì vì p+1 có 6 ước số tự nhiên nên có tiếp 2 khả năng
1) p+1=2^2.3=12 => p=11=> p-1=10 ( không thỏa mãn )
2) p+1=2.3^2=18 => p=17=> p-1=16 ( không thỏa mãn )
Vậy ta kết luận chỉ có p=19 là thỏa mãn
Êu , lần sau cop mạng nhớ ghi nguồn vào bạn =)) ăn xong đéo định trả ơn à ?
Với mọi số tự nhiên a> 1 ta có:
\(\frac{1}{\sqrt{a}}=\frac{2}{2\sqrt{a}}>\frac{2}{\sqrt{a}+\sqrt{a+1}}=2\left(\sqrt{a+1}-\sqrt{a}\right)=2\sqrt{a+1}-2\sqrt{a}\)
\(\frac{1}{\sqrt{a}}=\frac{2}{2\sqrt{a}}< \frac{2}{\sqrt{a}+\sqrt{a-1}}=2\left(\sqrt{a}-\sqrt{a-1}\right)=2\sqrt{a}-2\sqrt{a-1}\)
Áp dụng vào bài tập trên ta có:
\(S=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{144}}\)
\(>2\sqrt{2}-2\sqrt{1}+2\sqrt{3}-2\sqrt{2}+2\sqrt{4}-2\sqrt{3}+...+2\sqrt{145}-2\sqrt{144}\)
\(=-2\sqrt{1}+2\sqrt{145}>2\left(\sqrt{145}-1\right)>2\left(\sqrt{144}-1\right)=22\)
=> S>22
\(S=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{144}}\)
\(< 1+2\sqrt{2}-2\sqrt{1}+2\sqrt{3}-2\sqrt{2}+...+2\sqrt{144}-2\sqrt{143}\)
\(=1-2\sqrt{1}+2\sqrt{144}=23\)
=> S<23
Vậy 22<S<23