K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

llương ntn? để mik giới thieeuk cho bn!!!!

1 tháng 1 2019

Đề hơi nhầm 1 xíu nhé, 2004 ở dưới và 2005 ở trên :v

NM
19 tháng 9 2021

ta chú ý :

\(15^7\text{ chia 49 dư 1}\)

mà \(15^{15}=\left(14+1\right)^{15}\text{ chia 7 dư 1 nên :}15^{15}=7k+1\)

nên : \(15^{15^{15}}=15^{7k+1}=15\times15^{7k}\text{ chia 49 dư 15}\)

1 tháng 1 2019

Đặt \(ab=x\)\(bc=y\);\(ac=z\)

\(BPT< =>\left(x+y+z\right)^2\ge3\left(xz+xy+yz\right)\)

\(< =>x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\)

\(< =>x^2+y^2+z^2-xy-xz-yz\ge0\)

\(< =>2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\left(LĐ\right)\)

\(a^2+b^2+c^2\ge2\left(ab+bc+ac\right)=2\times9=18\)
 

1 tháng 1 2019

Nguyễn Quỳnh Anh Sai rồi nhé!

1 tháng 1 2019

BĐT Cô-si đê ông

1 tháng 1 2019

\(2.\sqrt{a}+3.\sqrt[3]{b}+4.\sqrt[4]{c}\)

\(=\sqrt{a}+\sqrt{a}+\sqrt[3]{b}+\sqrt[3]{b}+\sqrt[3]{b}+\sqrt[4]{c}+\sqrt[4]{c}+\sqrt[4]{c}+\sqrt[4]{c}\)

Áp dụng BĐT AM-GM ta có:

\(2.\sqrt{a}+3.\sqrt[3]{b}+4.\sqrt[4]{c}\ge9\sqrt[9]{\sqrt{a}.\sqrt{a}.\sqrt[3]{b}.\sqrt[3]{b}.\sqrt[3]{b}.\sqrt[4]{c}.\sqrt[4]{c}.\sqrt[4]{c}.\sqrt[4]{c}}=9.\sqrt[9]{abc}\)

                                                                                                                                           đpcm