Cho tam giác DEF có DE = 3cm , DF = 4cm, EF = 5CM. DI là đường trung tuyến ứng với xạnh EF
a) Chứng minh tam giăc DEF vuông.
b) Tính độ dài đoạn thẳng DI
c) Qua I kẻ IK vuông góc DF. Tính độ dài đoạn thẳng IK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) A = 2003.2005 = 2003.2004 + 2003
B = 20042 = 2004.2003 + 2004
=> A < B
2) A = 123456787.123456789 = 123456787.123456788 + 123456787
B = 1234567882 = 123456788.123456787 + 123456788
=> A < B
Ta có: \(x+y=\frac{1}{40}\)
\(\Rightarrow\left(x+y\right)^2=\frac{1}{1600}\)
\(\Rightarrow x^2+2xy+y^2=\frac{1}{1600}\)
\(\Rightarrow x^2+\frac{1}{40}+y^2=\frac{1}{1600}\)
\(\Rightarrow x^2+y^2=\frac{1}{1600}-\frac{1}{40}\)
\(\Rightarrow x^2+y^2=\frac{-39}{1600}\)
Vì \(x^2+y^2\ge0\)nên \(x^2+y^2\)không có giá trị nào t/m đề bài
a)\(N=\left(\frac{x^2}{x^2-y^2}+\frac{y}{x-y}\right):\frac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
\(=\left(\frac{x^2}{\left(x-y\right)\left(x+y\right)}+\frac{xy+y^2}{\left(x-y\right)\left(x+y\right)}\right):\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x^4-y^4\right)\left(x-y\right)}\)
\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}:\frac{\left(x^2+xy+y^2\right)}{x^4-y^4}\)
\(=\frac{x^4-y^4}{\left(x-y\right)\left(x+y\right)}\)
\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{x^2-y^2}=x^2+y^2\)
b) Ta có: \(x+y=\frac{1}{40}\)
\(\Rightarrow\left(x+y\right)^2=\frac{1}{1600}\)
\(\Rightarrow x^2+2xy+y^2=\frac{1}{1600}\)
\(\Rightarrow x^2-\frac{1}{40}+y^2=\frac{1}{1600}\)
\(\Rightarrow x^2+y^2=\frac{1}{1600}+\frac{1}{40}\)
\(\Rightarrow x^2+y^2=\frac{41}{1600}\)
Vậy \(N=\frac{41}{1600}\)
Nhà hàng Tôm hùm kính chào quý khách ĐC : 255 Nguyễn Huệ, Q tân bình , TP HCM nhà hàng của gđ mik rất mong dc đón các bn
Cậu vào phần thống kê câu trả lời của mk ấy, ngay câu đầu tiên
tham khảo nha: Câu hỏi của Nguyễn Thị Phương Thảo - Toán lớp 8 - Học toán với OnlineMath
Ta có: x + y + z = 0
=> x = -y - z
=> x2 = (-y - z)2
=> x2 = y2 + 2yz + z2
=> x2 - y2 - z2 = 2yz
CMTT: y2 = x2 + 2xz + z2 => y2 - z2 - x2 = 2xz
z2 = x2 + 2xy + y2 => z2 - x2 - y2 = 2xy
Khi đó, ta có:M = \(\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}\)
M = \(\frac{x^3+y^3+z^3}{2xyz}\)
M = \(\frac{\left(x+y\right)\left(x^2-xy+y^2\right)+z^3}{2xyz}\)
M = \(\frac{\left(x+y\right)\left(x^2+2xy+y^2\right)-3xy\left(x+y\right)+z^3}{2xyz}\)
M = \(\frac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)
M = \(\frac{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right).z+x^2\right]-3xy\left(x+y\right)}{2xyz}\)(do x + y + z = 0)
M = \(\frac{-3xy.z}{2xyz}=-\frac{3}{2}\) (do x + y = -z)
Sửa lại kq M = 3/2 (thay dòng cuối) (-3xy.z --> -3xy(-z)) n/b
a) Ta có: \(DE^2+DF^2=3^2+4^2=25\left(cm\right)\)
và \(EF^2=5^2=25\left(cm\right)\)
\(\Rightarrow DE^2+DF^2=EF^2\)
\(\Delta DEF\)có ba cạnh thỏa mãn định lý Py - ta - go nên \(\Delta DEF\) vuông
b) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=\frac{1}{2}EF\)
\(\Rightarrow DI=\frac{1}{2}.5=2,5\left(cm\right)\)
c) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=FI=EI\)
Lại có IK vuông góc DF
\(\Rightarrow\)IK là đường trung trực của đoạn thẳng DF
\(\Rightarrow IK=\frac{1}{2}DF=\frac{1}{2}.4=2\left(cm\right)\)