Cho hình vuoonng ABCD. Điểm O nằm trên miền trong của hình vuông ABCD thỏa mãn OB = 2OA và góc AOB = 135o. CMR: OC = OA +OB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
a) ĐKXD: \(x+2\ne0\)và \(x^2+4x+4\ne0\)và \(x^2-4\ne0\)và \(2-x\ne0\)
\(\Leftrightarrow x\ne-2\)và \(\left(x+2\right)^2\ne0\)và \(\left(x-2\right)\left(x+2\right)\ne0\)và \(x\ne2\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
+) \(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(=\left[\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right]:\left[\frac{2}{\left(x-2\right)\left(x+2\right)}-\frac{x+2}{\left(x-2\right)\left(x+2\right)}\right]\)
\(=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2x}{\left(x+2\right)^2}:\frac{-x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2x}{\left(x+2\right)^2}.\frac{\left(x-2\right)\left(x+2\right)}{-x}\)
\(=\frac{-2x+4}{x+2}\)
b) Ta có: x-1=3 <=> x=4 Thay vào A ta được:
\(\frac{-2.4-4}{4+2}=-2\)
c)
Để \(A\in Z\Leftrightarrow8⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(8\right)=\left\{\pm1;\pm4;\pm8\right\}\)
Bạn làm nốt nha
Số cần tìm cộng thêm 9 thì chia hết cho 7 và 13
Vì 7 và 13 là hai số nguyên tố cùng nhau nên số cần tìm chia hết cho 7.13=91
Vậy số cần tìm khi chia cho 91 dư là 91-9=82
Ta có: a2 + b2 = 80
=> (a2 + 2ab + b2) - 2ab = 80
=> (a + b)2 - 2ab = 80
=> (-6)2 - 2ab = 80
=> 2ab = 36 - 80
=> 2ab = -44
=> ab = -22
Khi đó: M = a3 + b3 = (a + b)(a2 - ab + b2) = -6.[80 - (-22)] = -6.102 = -612
a) =\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+\frac{25}{4}x^2-\frac{9}{4}x^2\)
\(=\left(x^2-x+1-\frac{5}{2}x\right)^2-\frac{9}{4}x^2\)
\(=\left(x^2+1-2x\right)\left(x^2+1-5\right)\)
Em kiểm tra lại đề bài. Nếu a = b = c = d. Thì a/b+c + b/c+d + c/d+a + d/a+b = 2.
Câu hỏi của nhóc con - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo đề bài và cách làm tại link này nhé!