|x-3|-|x-5|=2x-8
giúp mik vs mik cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: |x - 3| + |x - 5| \(\ge\)|x - 3 + x - 5| = |2x - 8| = 2x - 8 (đk: x \(\ge\)4 => x - 4 \(\ge\)0)
Dấu "=" xảy ra <=> (x - 3)(x - 5) \(\ge\)0
Do x - 4 \(\ge\)0 => x - 3 > 0
=> x - 5 \(\ge\)0 => x \(\ge\)5
Vậy x \(\ge\)5 thì tmđb
Gọi số đo góc thứ nhất là 2x.
=> số đo góc thứ hai là 3x, số đo góc thứ ba là 4x.
Tổng 3 góc trong 1 tam giác là 180 độ.
=> 2x + 3x + 4x = 180. => 9x = 180. => x = 20.
Vậy số đo góc thứ nhất là 2x = 2.20 = 40 độ; số đo góc thứ hai là 3x = 3.20 = 60 độ; số đo góc thứ ba là 4x = 4.20 = 80 độ.
Đặt \(Q=\frac{1}{3}+\frac{1}{3^3}+\frac{1}{3^5}+...+\frac{1}{3^{99}}\)
\(\Rightarrow9Q=3+\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{97}}\)
\(\Rightarrow9Q-Q=\left(3+\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{97}}\right)-\left(\frac{1}{3}+\frac{1}{3^3}+\frac{1}{3^5}+...+\frac{1}{3^{99}}\right)\)
\(8Q=\frac{1}{3^{97}}-\frac{1}{3}\)
\(\Rightarrow Q=\frac{\frac{1}{3^{97}}-\frac{1}{3}}{8}\)
Vậy ...
ĐKXĐ : \(n\ge0\)
+) Nếu \(n=0\)\(\Rightarrow S=2012^{4.0}+2013^{4.0}+2014^{4.0}+2015^{4.0}\)
\(=1+1+1+1=4\) ( là SCP )
+) Nếu \(n\ne0\)\(\Rightarrow S=\left(2012^4\right)^n+\left(2013^4\right)^n+\left(2014^4\right)^n+\left(2015^4\right)^n\)
- Xét ( 20124 )n có CSTC là 6 ( 24 = 16 )
- Xét ( 20134 )n có CSTC là 1 ( 34 = 81 )
- Xét ( 20144 )n có CSTC là 6 ( 44 = 256 )
- Xét ( 20154 )n có CSTC là 5 ( 54 = 625 )
=> S có CSTC là 8 ( 6 + 1 + 6 + 5 = 18 ) ( không phải là SCP )
Vậy S có thể là SCP <=> n = 0
Ta có: \(\left(-8\right)^9=\left[\left(-2\right)^3\right]^9=\left(-2\right)^{27}\)
\(\left(-32\right)^5=\left[\left(-2\right)^5\right]^5=\left(-2\right)^{25}\)
Vì \(27>25\) nên \(\left(-2\right)^{27}< \left(-2\right)^{25}\)
\(\Rightarrow\left(-8\right)^9< \left(-32\right)^5\)
Vậy \(\left(-8\right)^9< \left(-32\right)^5\).
a)
Có: \(AD=AB;AE=AC\)
=> \(\frac{AD}{AB}=1;\frac{AE}{AC}=1\)
=> \(\frac{AD}{AB}=\frac{AE}{AC}=1\)
Áp dụng định lí Talet đảo ta được:
=> DE // BC.
=> \(NDA=ABM\) (2 góc ở vị trí so le trong)
Xét tam giác ABM và tam giác ADN có:
\(\hept{\begin{cases}AB=AD\left(gt\right)\\ABM=ADN\left(cmt\right)\\BM=DN\left(gt\right)\end{cases}}\)
=> Tam giác ABM = Tam giác ADN (cgc)
=> TA CÓ ĐPCM.
b) Do Tam giác ABM = Tam giác ADN (cmt)
=> \(BAM=DAN\)
Áp dụng định lí Talet khi BC // DE ta được:
=> \(\frac{AD}{AB}=\frac{AE}{AC}=\frac{DE}{BC}\)
Mà: \(\frac{AD}{AB}=\frac{AE}{AC}=1\left(cmt\right)\)
=> \(\frac{DE}{BC}=1\Rightarrow DE=BC\)
Mà: \(BM=DN\left(gt\right)\Rightarrow NE=MC\)
Khi đó, CMTT: Tam giác AMC = Tam giác ANE (cgc)
=> \(MAC=NAE\)
Ta có: \(BAC+ABC+ACB=180\) (ĐỊNH LÍ TỔNG 3 GÓC TRONG TAM GIÁC)
=> \(BAM+MAC+ABC+ACB=180\) (1)
Mà: E, A, C là 3 điểm thẳng hàng
=> góc EAB là góc ngoài của tam giác ABC
=> \(EAB=ABC+ACB\) (2)
Và: \(MAC=EAN\left(cmt\right)\) (3)
TỪ (1); (2) VÀ (3) TA ĐƯỢC:
=> \(BAM+NAE+BAE=180\)
=> \(NAM=180\)
=> 3 điểm M, N, A thẳng hàng.
VẬY TA CÓ ĐPCM.
a) xét \(\Delta ADE\)VÀ \(\Delta ABC\)CÓ
\(AD=AB\left(gt\right);\widehat{DAE}=\widehat{BAC}\left(Đ^2\right);AE=AC\left(gt\right)\)
=> \(\Delta ADE\)=\(\Delta ABC\)(c-g-c)
=> \(\widehat{ADE}=\widehat{ABC}\)( hai góc tương ứng ) hay \(\widehat{ADN}=\widehat{ABM}\)
xét \(\Delta ABM\)VÀ \(\Delta ADN\)CÓ
\(BM=DM\left(gt\right);\widehat{ADN}=\widehat{ABM}\left(cmt\right);AB=AD\left(gt\right)\)
=>\(\Delta ABM\)=\(\Delta ADN\)(c-g-c)
b tối tớ suy nghỉ
ê ê con gà
ngu thì chết