K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2019

Gọi số cam là x, số quýt là y. Điều kiện x,y là số nguyên dương.

Quýt ,cam mười bảy quả tươi nên ta có tổng số quả: x+y=17

Chia ba mỗi quả quýt rồi nên số miếng quýt là: 3y (miếng)

Còn cam mỗi quả chia mười vừa xinh nên số miếng cam là: 10x (miếng)

Trăm người , trăm miếng ngọt lành, vậy ta có: 10x+3y=100

Từ đó ta có hệ:

{x+y=1710x+3y=100⇔{3x+3y=5110x+3y=100

⇔{−7x=−4910x+3y=100⇔{x=73y=100−10x

⇔{x=73y=100−10.7⇔{x=7y=10(tha mãn)

Vậy có 10 quả quýt và 7 quả cam.


 

25 tháng 1 2019

Giải :

Giả sử 17 quả đều là quýt thì có số phần là :

           17 x 3 = 51 ( phần )

Số phần giảm đi là :

            100 - 51 = 49 ( phần )

Số cam là :

             49 : 7 = 7 ( quả )

Số quýt là 

              17 - 7 = 10 ( quả )

25 tháng 1 2019

Gọi 7 số nguyên liên tiếp là: n; n+1; n+2; n+3; n+4; n+5; n+6. Theo đề bài

\(n^2+\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2=\left(n+4\right)^2+\left(n+5\right)^2+\left(n+6\right)^2.\)

Khai triển, rút gọn rồi giải phương trình bậc 2 để tìm n phù hợp

25 tháng 1 2019

Lời giải:

Đặt \(\sqrt{x-2}=t\left(t\ge0\right)\)

Phương trình đã cho tương đương với: \(\sqrt{3t+1}-4t+3=0\)

Đặt \(\sqrt{3t+1}=u\Rightarrow t=\frac{u^2-1}{3}\)

Phương trình trở thành: \(u-\frac{4\left(u^2-1\right)}{3}+3=0\)

\(\Leftrightarrow u-\frac{4u^2}{3}-\frac{5}{3}=0\Leftrightarrow\frac{-4u^2+3u-5}{3}=0\)

\(\Leftrightarrow-4u^2+3u-5=0\)

Đến đây bí! Alibaba!

25 tháng 1 2019

Nhầm tí: 

Đặt \(\sqrt{3t+1}=u\Rightarrow t=\frac{u^2-1}{3}\) (u >= 0)

Phương trình trở thành: \(u-\frac{4\left(u^2-1\right)}{3}+3=0\)

\(\Leftrightarrow u-\frac{4u^2}{3}+\frac{4}{3}+3=0\)

\(\Leftrightarrow\frac{-4u^2+3u+13}{3}=0\Leftrightarrow-4u^2+3u+13=0\)

Đấy đây bí,alibaba!

24 tháng 1 2019

Không biết câu 1 đề là m2x hay là mx ta ? Bởi nếu đề như vậy đenta sẽ là bậc 4 khó thành bình phương lắm

Làm câu 2 trước vậy , câu 1 để sau

a, pt có nghiệm \(x=2-\sqrt{3}\)

\(\Rightarrow pt:\left(2-\sqrt{3}\right)^3+a\left(2-\sqrt{3}\right)^2+b\left(2-\sqrt{3}\right)-1=0\)

\(\Leftrightarrow26-15\sqrt{3}+7a-4a\sqrt{3}+2b-b\sqrt{3}-1=0\)

\(\Leftrightarrow\sqrt{3}\left(4a+b+15\right)=7a+2b+25\)

Vì VP là số hữu tỉ

=> VT là số hữu tỉ

Mà \(\sqrt{3}\)là số vô tỉ

=> 4a + b + 15 = 0

=> 7a + 2b + 25 = 0

Ta có hệ \(\hept{\begin{cases}4a+b=-15\\7a+2b=-25\end{cases}}\)

Dễ giải được \(\hept{\begin{cases}a=-5\\b=5\end{cases}}\)

b, Với a = -5 ; b = 5 ta có pt:

\(x^3-5x^2+5x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2-4x+1=0\left(1\right)\end{cases}}\)

Giả sử x1 = 1 là 1 nghiệm của pt ban đầu

          x2 ; x3 là 2 nghiệm của pt (1)

Theo Vi-ét \(\hept{\begin{cases}x_2+x_3=4\\x_2x_3=1\end{cases}}\)

Có: \(x_2^2+x_3^2=\left(x_2+x_3\right)^2-2x_2x_3=16-2=14\)

     \(x_2^3+x_3^3=\left(x_2+x_3\right)\left(x^2_2-x_2x_3+x_3^2\right)=4\left(14-1\right)=52\)

\(\Rightarrow\left(x_2^2+x_3^2\right)\left(x_2^3+x_3^3\right)=728\)

\(\Leftrightarrow x_2^5+x_3^5+x_2^2x_3^2\left(x_2+x_3\right)=728\)

\(\Leftrightarrow x^5_2+x_3^5+4=728\)

\(\Leftrightarrow x_2^5+x_3^5=724\)

  Có \(S=\frac{1}{x_1^5}+\frac{1}{x_2^5}+\frac{1}{x_3^5}\)

            \(=1+\frac{x_2^5+x_3^5}{\left(x_2x_3\right)^5}\)

            \(=1+724\)

             \(=725\)

Vậy .........

25 tháng 1 2019

Câu 1 đây , lừa người quá

Giả sử pt có 2 nghiệm x1 ; x2

Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m^2\\x_1x_2=2m+2\end{cases}}\)

\(Do\text{ }m\inℕ^∗\Rightarrow\hept{\begin{cases}S=m^2>0\\P=2m+2>0\end{cases}\Rightarrow}x_1;x_2>0\)       

Lại có \(x_1+x_2=m^2\inℕ^∗\)

Mà x1 hoặc x2 nguyên

Nên suy ra \(x_1;x_2\inℕ^∗\)

Khi đó : \(\left(x_1-1\right)\left(x_2-1\right)\ge0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1\ge0\)

\(\Leftrightarrow2m+2-m^2+1\ge0\)

\(\Leftrightarrow-1\le m\le3\)

Mà \(m\inℕ^∗\Rightarrow m\in\left\{1;2;3\right\}\)

Thử lại thấy m = 3 thỏa mãn

Vậy m = 3

25 tháng 1 2019

mình có thể chia cả 2 vế cho x3

được]

    1−3x±2√(1x+2x2)−6x2=0

]

sau đó dặt √(1x+2x2)=t

  được 1±3t2+2t3=0]

24 tháng 1 2019

bài này dễ mà mai mik làm cho nha

14 tháng 7 2020

Câu a) tự làm nhé ==* chưa làm được 

A E B F C D c a b

Gọi F là tiếp điểm của đường tròn (I) với BC.

Theo tính chất của hai tiếp tuyến cắt nhau, ta có:

AE = AD

BE = BF

CD = CF

Mà: AE = AB – BE

AD = AC – CD

Nên: AE + AD = ( AB – BE ) + ( AC – CD ) = AB + AC – ( BE + CD )

= AB + AC – (BF + CF) = AB + AC – BC

Suy ra: AE + AD = c + b – a

Hay: AE = AD = \(\frac{\left(c+b-a\right)}{2}\)

24 tháng 1 2019

đáp án là 8 khi x=y=z=2 nha. có đ/á nhưng ko bik làm