K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2021

Đặt \(\left(b+c,c+a,a+b\right)\rightarrow\left(x,y,z\right)\)thì \(x,y,z>0\)và \(a=\frac{y+z-x}{2};b=\frac{z+x-y}{2};c=\frac{x+y-z}{2}\)

Bất đẳng thức cần chứng minh trở thành: \(\frac{y+z-x}{2x}+\frac{25\left(z+x-y\right)}{2y}+\frac{4\left(x+y-z\right)}{2z}>2\)

Xét \(VT=\left(\frac{y}{2x}+\frac{z}{2x}-\frac{1}{2}\right)+\left(\frac{25z}{2y}+\frac{25x}{2y}-\frac{25}{2}\right)+\left(\frac{2x}{z}+\frac{2y}{z}-2\right)\)\(=\left(\frac{y}{2x}+\frac{25x}{2y}\right)+\left(\frac{25z}{2y}+\frac{2y}{z}\right)+\left(\frac{z}{2x}+\frac{2x}{z}\right)-15\)\(\ge2\sqrt{\frac{y}{2x}.\frac{25x}{2y}}+2\sqrt{\frac{25z}{2y}.\frac{2y}{z}}+2\sqrt{\frac{z}{2x}.\frac{2x}{z}}-15=2\)(BĐT Cauchy)

Đẳng thức xảy ra khi \(10x=2y=5z\)hay \(10\left(b+c\right)=2\left(c+a\right)=5\left(a+b\right)\)\(\Rightarrow\hept{\begin{cases}10b+8c=2a\\5b+10c=5a\end{cases}}\Leftrightarrow\hept{\begin{cases}2a=10b+8c\\2a=2b+4c\end{cases}}\Leftrightarrow8b+4c=0\)(Vô lí vì 8b + 4c > 0 với mọi b,c dương)

Vậy dấu bằng không xảy ra

20 tháng 1 2021

em chao chi a

 I C B D O E

.Ta có :ICIC là tiếp tuyến của (O)
\(\Rightarrow\widehat{CIE}=\widehat{IBC}\)
 

\(\Rightarrow\)ΔICEΔIBC(g.g)\(\Rightarrow\)
IEIC=ICIB
→ICE^=IBC^→ΔICE∼ΔIBC(g.g)→IEIC=ICIB

\(\Rightarrow\)IC2=IE.IB→IC2=IE.IB

Ta có : BD//AC\(\Rightarrow\widehat{IAE}=\widehat{EDB}=\widehat{ABE}\)

\(\Rightarrow\)ΔAIEΔBIA(g.g)\(\Rightarrow\)
AIBI=IEIA\(\Rightarrow\)
IA2=IB.IE
→ΔAIE∼ΔBIA(g.g)→AIBI=IEIA→IA2=IB.IE

IA2=IC2IA=ICI→IA2=IC2→IA=IC→I là trung điểm AC

19 tháng 1 2021

Dễ có IC là tiếp tuyến của đường tròn nên IC2 = IB.IE (1)

Theo tính chất của góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung, ta có: ^EBA = ^BDA

Lại có: ^BDA = ^DAC (BD//AC, hai góc so le trong)

Từ đó suy ra ^EBA = ^DAC

∆AIE và ∆BIA có: ^AIB là góc chung, ^EBA = ^DAC (cmt) nên ∆AIE ~ ∆BIA (g.g)

=>\(\frac{IA}{IE}=\frac{IB}{IA}\Rightarrow IA^2=IB.IE\)(2)

Từ (1) và (2) suy ra IA2 = IC2 hay IA = IC

Vậy I là trung điểm của AC (đpcm)

19 tháng 1 2021

Kẻ tiếp tuyến tại A. Gọi E là giao điểm của tiếp tuyến tại A với dây BC.

Ta có: EM=EA và \(\widehat{EAM}=\widehat{EMA}\)( tính chất 2 tiếp tuyến cắt nhau)

hay \(\widehat{EAB}+\widehat{BAM}=\widehat{ECA}+\widehat{CAM}\)

Mà \(\widehat{EAB}=\widehat{ECA}\)

=> \(\widehat{BAM}=\widehat{CAM}\) hay AM là phân giác góc BAC( đpcm)

15 tháng 2 2021

Tam giác ABD nội tiếp trong đường tròn (O) có AB là đường kính nên vuông tại D

Suy ra: AD ⊥ BD

Tứ giác BDCE là hình thoi nên EC // BD

Suy ra: EC ⊥ AD     (1)

Tam giác AIC nội tiếp trong đường tròn (O’) có AC là đường kính nên vuông tại I

Suy ra: AI ⊥ CE     (2)

Từ (1) và (2) suy ra AD trùng với AI

Vậy D, A, I thẳng hàng.

30 tháng 1 2021

A C B D E I O

a) Cùng bằng AD/AB=AD/AC.

b) tam giác BIE có góc AIB là góc ngoài nên góc AIB=góc IBE+góc IEB

mà góc IBE=IBD (gt) và góc IEB=góc ABD suy ra góc AIB=góc ABD+góc IBD=góc ABI

nên tam giác ABI cân tại A suy ra AI=AB=AC.

c)từ câu a) ta có BD/BE=CD/CE=DI/IE (do BI phân giác góc DBE)

suy ra CI phân giác góc DCE.

6 tháng 2 2021

ABD =1/2 sđ BD (góc tạo bởi tiếp tuyến và dây cung )

BED =1/2 sđ BD (góc nội tiếp) 

=> ABD=BED

ΔABD~ΔAEB

VÌ {BAD chung

     ABD=BED

=>AB/AE = AD/AB=>AB^2= AD.AE

20 tháng 1 2021

M A B E C m K

a/

Ta có

 \(\widehat{mAC}=\widehat{AMK}\) (góc đồng vị) (1)

\(\widehat{mAC}=\frac{1}{2}\) sđ cung AC (góc giữa tiếp tuyến và dây cung) (2)

\(\widehat{AEC}=\frac{1}{2}\) sđ cung AC (góc nội tiếp đường tròn) (3)

\(\widehat{AEC}=\widehat{MEK}\) (góc đối đỉnh) (4)

Từ (1), (2), (3) và (4) \(\Rightarrow\widehat{AMK}=\widehat{MEK}\) (*)

Ta có 

\(\widehat{ACE}=\widehat{EMK}\) (góc so le trong) (5)

\(\widehat{ACE}=\frac{1}{2}\) sđ cung AE  (góc nội tiếp đường tròn)(6)

\(\widehat{MAK}=\frac{1}{2}\) sđ cung AE (góc giữa tiếp tuyến và dây cung) (7)

Từ (5)' (6) và (7) \(\Rightarrow\widehat{MAK}=\widehat{EMK}\) (**)

Từ (*) và (**) => tg AMK đồng dạng với tg MEK

\(\Rightarrow\frac{MK}{EK}=\frac{AK}{MK}\Rightarrow MK^2=AK.EK\left(dpcm\right)\)

b/

Ta có

\(\widehat{KAB}=\frac{1}{2}\) sđ cung BE (góc nội tiếp đường tròn) (1)

\(\widehat{EBK}=\frac{1}{2}\) sđ cung BE ( góc giữa tiếp tuyến và dây cung) (2)

Từ (1) và (2) \(\Rightarrow\widehat{KAB}=\widehat{EBK}\)

Xét tam giác ABK và tam giác EBK có

\(\widehat{KAB}=\widehat{EBK}\) (cmt)

\(\widehat{AKB}\) chung

=> tam giác AKB đồng dạng với tam giác EBK

\(\Rightarrow\frac{KB}{EK}=\frac{AK}{KB}\Rightarrow KB^2=AK.EK\)

Từ kết quả của câu a \(\Rightarrow MK^2=KB^2\Rightarrow MK=KB\left(dpcm\right)\)

30 tháng 1 2021

M A B C E K

a)△AMK~△MEK( Chung góc K và góc MAK=góc ACE=góc KME)

suy ra AK/MK=MK/EK suy ra đpcm 

b)△AKB~△BKE(Chung góc K và góc KAB= góc KBE)

suy ra AK/BK=KB/KE suy ra KB2=AK.KE

kết hợp câu a) suy ra đpcm.

30 tháng 1 2021

a) = AI2

b) điểm D như hình vẽAD=AI2/AB= constant.

 

6 tháng 2 2021

Ta có PQI = PIA ( cùng chắn PI) nên ΔAPI ~ΔAIQ(g.g)

=> AP/AI = AI/AQ =>Ap.AQ= AI^2 ( không đổi )

Giả sử đt ngoại tiếp tấm giác BPQ cắt AB tại D (D khác B)

Khi đó tam giác ADP ~ tam giác AQB =>AD/AQ = AP/AB

hay AD.AB = AP.AQ=AI^2 ( không đổi) 

Do đó điểm D là điểm cố định (đpcm)

30 tháng 1 2021

1000

19 tháng 2 2021

Giải:

Nối M và K

Xét (O) có: \(\hat{AMK}\) là góc nội tiếp chắn cung nhỏ AK

                 \(\hat{KAB}\)  là góc tạo bởi tia tiếp tuyến và dây cung chắn cung nhỏ AK

\(\Rightarrow\) \(\hat{AMK}\) = \(\hat{KAB}\) ( cùng = 1/2 cung nhỏ AK )  (1)

Xét (O') có : \(\hat{BMK}\) là góc nội tiếp chắn cung nhỏ BK

                    \(\hat{KBA}\) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung nhỏ BK

\(\Rightarrow\) \(\hat{BMK}\) = \(\hat{KBA}\) ( cùng =1/2 cung nhỏ BK ) (2)

Từ (1) và (2) \(\Rightarrow\) \(\hat{AMK}\)+\(\hat{BMK}\)=\(\hat{KAB}\)\(\hat{KBA}\)

                      \(\Leftrightarrow\) \(\hat{AMB}\) = 50° = \(\hat{KAB}\) + \(\hat{KBA}\)

Xét △ KAB có: \(\hat{AKB}\) +(\(\hat{KAB}\) + \(\hat{KBA}\) )= 180° ( Tổng ba góc trong một tam giác)

                      \(\Leftrightarrow\) \(\hat{AKB}\) + 50° = 180°

                      \(\Leftrightarrow\)\(\hat{AKB}\) = 180°-50°

                    \(\Leftrightarrow\)\(\hat{AKB}\) = 130°

Vậy \(\hat{AKB}\) có số đo là 130°