\((\dfrac{3-\sqrt{6}}{\sqrt{2}-\sqrt{3}}+1)(\dfrac{\sqrt{21}+\sqrt{15}}{\sqrt{7}+\sqrt{6}}+1)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, đk x >= 1/2
\(3\sqrt{2x-1}+2\sqrt{2x-1}-\sqrt{2x-1}=12\)
\(\Leftrightarrow4\sqrt{2x-1}=12\Leftrightarrow2x-1=9\Leftrightarrow x=5\left(tmđk\right)\)
b, bạn xem lại đề nhé
đk a >= 0 ; a khác 9
\(=\dfrac{a-3\sqrt{a}+2a+6\sqrt{a}-3a-9}{a-9}=\dfrac{3\sqrt{a}-9}{a-9}=\dfrac{3}{\sqrt{a}+3}\)
đk a >= 0 ; a khác 9
\(=\dfrac{a-3\sqrt{a}+2a+6\sqrt{a}-3a-9}{a-9}=\dfrac{3\sqrt{a}-9}{a-9}=\dfrac{3}{\sqrt{a}+3}\)
a) Để A xác định
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x-4\ne0\\\sqrt{x}-2\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\\\sqrt{x}\ne2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\\x\ne4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Vậy với \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\) thì A xác định
b) \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(\Leftrightarrow A=\dfrac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(\Leftrightarrow A=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow A=\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow A=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
Để \(A=\dfrac{-1}{3}\)
\(\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{-1}{3}\)
\(\Leftrightarrow3\sqrt{x}=-\sqrt{x}+2\)
\(\Leftrightarrow4\sqrt{x}=2\)
\(\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)
sửa đề \(\left(\dfrac{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{2}-\sqrt{3}}+1\right)\left(\dfrac{\sqrt{3}\left(\sqrt{7}+\sqrt{5}\right)}{\sqrt{7}+\sqrt{5}}+1\right)\)
\(=\left(1-\sqrt{3}\right)\left(\sqrt{3}+1\right)=1-3=-2\)
.