OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ cần giải câu c)
Cám ơn các bạn
chứng minh: \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)≥\(\dfrac{3}{2}\) với a≥b≥c>0
Giải pt:
câu 1 ý c ạ
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. a) Biết AB = 2cm, AC =2/3 m. Tính độ dài BC, AH và số đo góc B. b) Gọi E là trung điểm AC của tam giác ABC và K là hình chiếu vuông góc của A lên BE. Chứng minh BK BE = BH BC và tam giác KEC đồng dạng với tam giác CEB c) Giả thiết rằng tia CK đồng thời là phân giác của góc C của tam giác ABC. Chứng minh 2.cos B = taB
Câu 4(3 điểm) Cho tam giác ABC có AB = 6 cm; AC = 8cm BC = 10cm a) Chứng minh ABC là tam giác vuông. b) Tĩnh angle B 2C; và đường cao AH. c) Lấy M bất kỳ trên cạnh BC. Gọi P; Q lần lượt là hình chiếu của M trên AB; AC. Hỏi M ở vị trí nào thì PO có độ dài nhỏ nhất.
giải dùm mình với mai thi rồi
P= (\(\dfrac{2}{\sqrt{x}-1}\)-\(\dfrac{5}{x+\sqrt{x}-2}\)):(1+\(\dfrac{3-x}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+2\right)}\)
a) rút gọn bt (làm mỗi ý này thôi cũng đc ạ)
b) Tính P khi x=6-2\(\sqrt{5}\)
c) Tìm giá trị của x để P= \(\dfrac{1}{\sqrt{x}}\)
d) Tìm x thuộc Z để P thuộc Z
e) Tìm x để P< 1-\(\sqrt{x}\)
g) Tìm min P
giúp e vs ạ
cho hình chữ nhật AEHF có AF=5cm,AE=12cm. gọi O là giao điểm của AH và EF. đường vuông góc với AH tại H cắt AF tại C
a) tính độ dài đoạn thẳng CF và góc FHC ( làm tròn đến độ)
b) gọi B là giao điểm của HC và AE, I là trung điểm của HC. CM rằng OB vuông góc với AI
c) CM: CF√BH+BE√CH=AH√BC