K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2022

điều kiện \(x\ge-3\)

Nhận thấy \(x^2+8x+15=\left(x+3\right)\left(x+5\right)\) nên pt đã cho \(\Leftrightarrow\sqrt{x+3}+3x\sqrt{x+5}-3x-\sqrt{\left(x+3\right)\left(x+5\right)}=0\) 

\(\Leftrightarrow\sqrt{x+3}\left(1-\sqrt{x+5}\right)-3x\left(1-\sqrt{x+5}\right)=0\)

\(\Leftrightarrow\left(1-\sqrt{x+5}\right)\left(\sqrt{x+3}-3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1\\\sqrt{x+3}=3x\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x+5=1\\x+3=9x^2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-4\left(loại\right)\\9x^2-x-3=0\end{matrix}\right.\)

Xét pt \(9x^2-x-3=0\) có \(\Delta=\left(-1\right)^2-4.9.\left(-3\right)=109>0\) nên pt này luôn có 2 nghiệm phân biệt: 

\(x_1=\dfrac{-\left(-1\right)+\sqrt{109}}{2.9}=\dfrac{1+\sqrt{109}}{18}\) và \(x_2=\dfrac{1-\sqrt{109}}{18}\)(nhận cả 2 nghiệm.

Vậy pt đã cho có tập nghiệm \(S=\left\{\dfrac{1\pm\sqrt{109}}{18}\right\}\)

2 tháng 9 2022

\(\sqrt{x+3}+3x.\sqrt{x+5}=3x+\sqrt{x^2+8x+15}\)      (\(x\ge-3\))

\(\Leftrightarrow\sqrt{x+3}+3x.\sqrt{x+5}=3x+\sqrt{x+3}.\sqrt{x+5}\)

\(\Leftrightarrow\sqrt{x+3}.\left(1-\sqrt{x+5}\right)-3x.\left(1-\sqrt{x+5}\right)=0\)

\(\left(\sqrt{x+3}-3x\right).\left(1-\sqrt{x+5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=9x^2\\x+5=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x^2-x-3=0\\x=-4\left(KTM\right)\end{matrix}\right.\)

\(\Leftrightarrow\left(3x\right)^2-2.3x.\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{1}{36}-3=0\)

\(\Leftrightarrow\left(3x-\dfrac{1}{6}\right)^2-\dfrac{109}{36}=0\)

\(\Leftrightarrow\left(3x-\dfrac{1}{6}-\dfrac{\sqrt{109}}{6}\right).\left(3x-\dfrac{1}{6}+\dfrac{\sqrt{109}}{6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{109}}{18}\left(TM\right)\\x=\dfrac{1-\sqrt{109}}{18}\left(TM\right)\end{matrix}\right.\)

Vậy

hỏi gỉ giợ

 

4 tháng 9 2022

Ta có \(\Delta\)ABC vuông tại A 

=> \(BC^2=AC^2+AB^2\)(Định lý pitago)

Thay AC = 12, AB = 8, ta có

\(BC^2=12^2+8^2\)

       \(=144+64=208\)

=> \(BC=\sqrt{208}=\text{14.42220510185596}\)

Kiểu như vậy đấy :)

 

31 tháng 8 2022

+) AH = AB . SIN B =9 . SIN (57) = 7.548035112(cm)

+) BH = sqrt ( AB^2 - AH^2)= 4.901751315(cm) (pytago)

+) Sin C = AH / AC => C= 38 (Deg) => A = pi - (C + B ) = 84(Deg)

+) BH= AB . cos B = 9 . cos 57 = 4.901751315(cm) (1)

+) HC = AC . cos C = 9.328836187(cm)(2)

(1) vs (2) => BC BH + HC = 14.2305865(cm)

 

DD
3 tháng 9 2022

\(\widehat{CAO}=90^o\) , \(\widehat{CMO}=90^o\)

do đó \(A,M\) cùng nhìn \(CO\) dưới góc \(90^o\)

Vậy \(A,C,M,O\) cùng thuộc một đường tròn. 

31 tháng 8 2022

bằng 45

31 tháng 8 2022

quỹ tích những điểm cách đều 1 điểm O cho trước là đường tròn tâm O

AH
Akai Haruma
Giáo viên
31 tháng 8 2022

Lời giải:

a. Ta thấy $\widehat{BEC}=\widehat{BDC}=90^0$, mà 2 góc này cùng nhìn cạnh $BC$ nên $BEDC$ là tứ giác nội tiếp

$\Rightarrow B,C,D,E$ cùng thuộc 1 đường tròn 

b. 

Ta thấy $\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0$ mà 2 góc này là 2 góc đối nhau nên $AEHD$ là tứ giác nội tiếp

$\Rightarrow A,E,H,D$ cùng thuộc 1 đường tròn

c. 

$H$ là giao của 2 đường cao $BD, CE$ nên $H$ là trực tâm của tam giác $ABC$
$\Rightarrow AH\perp BC(1)$

Mặt khác: $\widehat{HKC}=90^0$ (góc nt chắn nửa đường tròn đường kính $CH$) 

$\Rightarrow HK\perp BC(2)$

Từ $(1); (2)\Rightarrow A,H,K$ thẳng hàng.

AH
Akai Haruma
Giáo viên
31 tháng 8 2022

Hình vẽ:

31 tháng 8 2022

Xét đường tròn (O) có AB là đường kính nên \(\widehat{ACB}=90^o\) (góc nội tiếp chắn nửa đường tròn) hay \(BC\perp AE\) tại C hay BC là đường cao của tam giác ABE. Lại có C là trung điểm AB nên BC là trung tuyến của tam giác ABE. Từ đó tam giác ABE cân tại B hay \(BE=BA\). Do BA cố định nên BE không đổi. Mà B cố định nên khi C thay đổi thì E sẽ di chuyển trên đường tròn tâm B, bán kính BA cố định.

AH
Akai Haruma
Giáo viên
31 tháng 8 2022

Câu hỏi không rõ ràng. Bạn xem lại.

DD
3 tháng 9 2022

\(\widehat{C}=90^o-\widehat{B}=90^o-32^o=58^o\)

\(tanB=\dfrac{AC}{AB}\Leftrightarrow AC=AB.tanB=3,5.tan32^o\left(cm\right)\)

\(cosB=\dfrac{AB}{BC}\Leftrightarrow BC=\dfrac{AB}{cosB}=\dfrac{3,2}{cos32^o}\left(cm\right)\)

DD
3 tháng 9 2022

\(x^3-x^2-7x+18=4\sqrt{x+2}\)  (ĐK: \(x\ge-2\))

\(\Leftrightarrow x^3-x^2-8x+12+x+6-4\sqrt{x+2}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(x+3\right)+\dfrac{\left(x+6\right)^2-16\left(x+2\right)}{x+6+4\sqrt{x+2}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(x+3\right)+\dfrac{x^2-4x+4}{x+6+4\sqrt{x+2}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(x+3+\dfrac{1}{x+6+4\sqrt{x+2}}\right)=0\)

\(\Leftrightarrow x-2=0\) (vì \(x\ge-2\))

\(\Leftrightarrow x=2\) (thỏa mãn)