tìm x,y,z biết |x-2|+|y-1|+(x+y-z-2)^2024=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
b: ta có: ΔABD=ΔACD
=>DB=DC
=>D là trung điểm của BC
c: Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
d: Ta có: ΔABM=ΔACN
=>AM=AN
=>ΔAMN cân tại A
e: ta có: ΔABM=ΔACN
=>\(\widehat{MAB}=\widehat{NAC}\)
Xét ΔAKB vuông tại K và ΔAHC vuông tại H có
AB=AC
\(\widehat{KAB}=\widehat{HAC}\)
Do đó: ΔAKB=ΔAHC
f: Ta có: ΔAKB=ΔAHC
=>AK=AH
Xét ΔAMN có \(\dfrac{AK}{AM}=\dfrac{AH}{AN}\)
nên KH//MN
a: Xét ΔABD vuông tại B và ΔAHD vuông tại H có
AD chung
\(\widehat{BAD}=\widehat{HAD}\)
Do đó: ΔABD=ΔAHD
=>DB=DH
b: Xét ΔDBK vuông tại B và ΔDHC vuông tại H có
DB=DH
\(\widehat{BDK}=\widehat{HDC}\)(hai góc đối đỉnh)
Do đó: ΔDBK=ΔDHC
=>DK=DC
Kẻ IH là phân giác của góc BIC
Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
=>\(\widehat{ABC}+\widehat{ACB}=180^0-60^0=120^0\)
=>\(2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=120^0\)
=>\(\widehat{IBC}+\widehat{ICB}=60^0\)
Xét ΔIBC có \(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180^0\)
=>\(\widehat{BIC}+60^0=180^0\)
=>\(\widehat{BIC}=120^0\)
Ta có: \(\widehat{BIC}+\widehat{BIF}=180^0\)(hai góc kề bù)
=>\(\widehat{BIF}+120^0=180^0\)
=>\(\widehat{BIF}=60^0\)
Ta có: \(\widehat{BIF}=\widehat{EIC}\)(hai góc đối đỉnh)
mà \(\widehat{BIF}=60^0\)
nên \(\widehat{EIC}=60^0\)
IH là phân giác của góc BIC
=>\(\widehat{BIH}=\widehat{CIH}=\dfrac{\widehat{BIC}}{2}=60^0\)
Xét ΔFBI và ΔHBI có
\(\widehat{FBI}=\widehat{HBI}\)
BI chung
\(\widehat{FIB}=\widehat{HIB}\left(=60^0\right)\)
Do đó: ΔFBI=ΔHBI
=>IF=IH
Xét ΔIHC và ΔIEC có
\(\widehat{HIC}=\widehat{EIC}\)
IC chung
\(\widehat{HCI}=\widehat{ECI}\)
Do đó: ΔIHC=ΔIEC
=>IH=IE
mà IH=IF
nên IE=IF
\(x:5=y:4\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\)
\(y:2=z:3\Rightarrow\dfrac{y}{4}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x+y+z}{5+4+6}=\dfrac{90}{15}=6\)
\(\Rightarrow\dfrac{x}{5}=6\Rightarrow x=30\)
\(\Rightarrow\dfrac{y}{4}=6\Rightarrow y=24\)
\(\Rightarrow\dfrac{z}{6}=6\Rightarrow z=36\)
Gọi số gạo ban đầu trong kho 1;kho 2;kho 3 lần lượt là a(tấn),b(tấn),c(tấn)
(ĐK: a>0; b>0; c>0)
Số gạo của ba kho lần lượt tỉ lệ với \(1,3;2+\dfrac{1}{2}=2,5;6,5\) nên ta có: \(\dfrac{a}{1,3}=\dfrac{b}{2,5}=\dfrac{c}{6,5}\)
=>\(\dfrac{a}{13}=\dfrac{b}{25}=\dfrac{c}{65}\)
Số gạo của kho thứ hai nhiều hơn kho thứ nhất 43,2 tấn nên b-a=43,2
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{13}=\dfrac{b}{25}=\dfrac{c}{65}=\dfrac{b-a}{25-13}=\dfrac{43.2}{12}=3.6\)
=>\(a=3,6\cdot13=46,8;b=25\cdot3,6=90;c=3,6\cdot65=234\)
Số gạo bán được ở kho 1 là:
\(46,8\cdot40\%=18,72\left(tân\right)\)
Số gạo bán được ở kho 2 là:
\(90\cdot30\%=27\left(tấn\right)\)
Số gạo bán được ở kho 3 là:
\(234\cdot25\%=58,5\left(tấn\right)\)
Số gạo bán được là:
18,72+27+58,5=104,22(tấn)
\(4,5:0,3=2,25:\left(0,1x\right)\)
=>\(2,25:\left(0,1x\right)=15\)
=>\(0,1\cdot x=2,25:15=0,15\)
=>\(x=0,15:0,1=1,5\)
Ta có: \(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}\) và \(a-2b-3c=14\) \((*)\)
Áp dụng tính chất của dãy tỉ số bằng nhau và \((*)\), ta được:
\(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}=\dfrac{2\left(b-2\right)}{6}=\dfrac{3\left(c-3\right)}{12}\)
\(=\dfrac{\left(a-1\right)-2\left(b-2\right)-3\left(c-3\right)}{2-6-12}\)
\(=\dfrac{a-1-2b+4-3c+9}{-16}\)
\(=\dfrac{\left(a-2b-3c\right)+\left(-1+4+9\right)}{-16}\)
\(=\dfrac{14+12}{-16}=-\dfrac{13}{8}\)
Suy ra: \(\dfrac{a-1}{2}=\dfrac{-13}{8}\)
\(\Rightarrow8\left(a-1\right)=-13\cdot2\)
\(\Rightarrow8a-8=-26\)
\(\Rightarrow8a=-26+8\)
\(\Rightarrow8a=-18\Rightarrow a=-\dfrac{9}{4}\)
a: Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó; ΔABI=ΔACI
b: Ta có: ΔAIB=ΔAIC
=>\(\widehat{AIB}=\widehat{AIC}\)
mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)
nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)
=>AI\(\perp\)BC
c: Xét ΔABC có
AI là đường trung tuyến
G là trọng tâm
Do đó: \(AG=\dfrac{2}{3}AI=\dfrac{2}{3}\cdot12=8\left(cm\right)\)
Ta có: AG+GI=AI
=>GI+8=12
=>GI=4(cm)
\(\left|x-2\right|>=0\forall x\)
\(\left|y-1\right|>=0\forall y\)
\(\left(x+y+z-2\right)^{2024}>=0\forall x,y,z\)
Do đó: \(\left|x-2\right|+\left|y-1\right|+\left(x+y-z-2\right)^{2024}>=0\forall x,y,z\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y-1=0\\x+y-z-2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=1\\z=x+y-2=2+1-2=1\end{matrix}\right.\)