Cho hệ
\(\hept{\orbr{\begin{cases}2x+3y=3+a\\x+2y=a\end{cases}}}\)
Tìm a để hệ có 1 nghiệm duy nhất x,y thỏa mãn \(^{^{x^2+y^2}=17}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử x,y là nghiệm nguyên dương của phương trình \(xy-4x=35-5y\)
Ta có pt\(xy-4x=35-5y\)
\(\Leftrightarrow x\left(y-4\right)+5y=35\)
\(\Leftrightarrow x\left(y-4\right)+5y-20=15\)
\(\Leftrightarrow x\left(y-4\right)+5\left(y-4\right)=15\)
\(\Leftrightarrow\left(y-4\right)\left(x+5\right)=15\)
Vì \(x\in N\Rightarrow x+5\in N\)và \(x+4>0\)
\(\Rightarrow y-4>0\)và \(y-4\in N\)
Đó lập bảng làm nốt nhé chị
Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
\(\hept{\begin{cases}x+y=z\left(1\right)\\x^3+y^3=z^2\left(2\right)\end{cases}}\)
Ta thế (1) vào (2) : \(\left(x+y\right)^3-3xy\left(x+y\right)=\left(x+y\right)^2\)
<=> \(\left(x+y\right)^2-3xy=\left(x+y\right)\)
Đặt: \(x+y=S;xy=P\)vì x, y nguyên dương => S; P nguyên dương
ĐK để tồn tại nghiệm x, y là: \(S^2\ge4P\)
Có: \(S^2-3P=S\)
=> \(S+3P\ge4P\)<=> \(S\ge P\)
=> \(S^2-S=3P\le3S\)
<=> \(0\le S\le4\)
+) S = 0 loại
+) S = 1 => P = 0 loại
+) S = 2 => P =3/2 loại
+) S = 3 => P = 2
=> \(\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)<=> x =2; y =1 hoặc x = 1; y =2
=> (x; y; z ) = ( 1; 2; 3) thử lại thỏa mãn
hoặc (x; y; z) = ( 2; 1; 3 ) thử lại thỏa mãn
+) S = 4 => P = 4
=> \(\hept{\begin{cases}x+y=4\\xy=4\end{cases}\Leftrightarrow}x=y=2\)
=> (x; y; z ) = ( 2; 2; 4) thử lại thỏa mãn.
Vậy: có 3 nghiệm là:....