K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2020

Lấy 2 lần phương trình trên trừ đi phương trình dưới là xong.

9 tháng 2 2020

Gọi thời gian người 1 làm riêng là x (giờ) (x>0, x thuộc N)

      thời gian người 2 làm riêng là y (giờ) (y>0, y thuộc N)

Trong 1 giờ người 1 làm được \(\frac{1}{x}\)(công việc)

                  người 2 làm được \(\frac{1}{y}\)(công việc) 

Trong 1 giờ cả 2 người làm được \(\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\)(công việc) (1)

Nếu người 1 làm 3h, người 2 là 6h thì hoàn thành 25% = \(\frac{1}{4}\)công việc nên ta có: \(\frac{3}{x}+\frac{6}{y}=\frac{1}{4}\)(2)

Từ (1) và (2) ta có hệ phương trình: 

\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\\\frac{3}{x}+\frac{6}{y}=\frac{1}{4}\end{cases}}\)    Đặt \(\frac{1}{x}=a\)\(;\)\(\frac{1}{y}=b\)

\(\Rightarrow\hept{\begin{cases}a+b=\frac{1}{16}\\3a+6b=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3a+3b=\frac{3}{16}\\3a+6b=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3b=\frac{1}{16}\\a+b=\frac{1}{16}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=\frac{1}{48}\\a+\frac{1}{48}=\frac{1}{16}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=\frac{1}{48}\\a=\frac{1}{24}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=24\\y=48\end{cases}}\)

Vậy......

12 tháng 3 2020

em đéo biết

8 tháng 2 2020

Chịu !!

8 tháng 2 2020

\(Đkxđ:x\ge-1\)

Ta có: \(\sqrt{x+1}+2x\sqrt{x+3}=2x+\sqrt{x^2+4x+3}\)

\(\Leftrightarrow2x\sqrt{x+3}-2x+\sqrt{x+1}-\sqrt{\left(x+1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow2x\left(\sqrt{x+3}-1\right)-\sqrt{x+1}\left(\sqrt{x+3}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+3}-1\right)\left(\sqrt{x+1}-2x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+3}=1\left(1\right)\\\sqrt{x+1}=2x\left(2\right)\end{cases}}\)

Ta có: \(\left(1\right)\Leftrightarrow x=-2\left(l\right)\)

\(\left(2\right)\Leftrightarrow\hept{\begin{cases}x\ge0\\x+1=4x^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\4x^2-x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x=\frac{1\pm\sqrt{17}}{8}\end{cases}}\)

\(\Leftrightarrow x=\frac{1+\sqrt{17}}{8}\left(tmđk\right)\)

Vậy pt đã cho cs nghiệm \(s=\frac{1+\sqrt{17}}{8}\)