K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

  • LUYỆN TẬP
  • HỎI ĐÁP
  • KIỂM TRA

MUA THẺ HỌC

  •  
  •  
  • 1
  • ๖ۣۜƝƘ☆๖ۣۜҪôηɠ•Ҫɦúลツ2k8 ⁀ᶦᵈᵒᶫ - ๖ۣۜTεαм ๖ۣۜFσɾεʋεɾ ๖ۣۜAℓσηε♡ 

☆》Hãčķěř《☆ _❷ⓚ❷ _ Ϯëą๓ _ Trà _ Sữa

 Kết bạn

  • Hoạt động
  • Bạn bè
  • Tủ sách

 ☆》Hãčķěř《☆ _❷ⓚ❷ _ Ϯëą๓ _ Trà _ Sữa

Ai cũng hạnh phúc trừ tôi!...// Để ☆》Hãčķěř《☆ kể cho mà nghe: Câu truyện xảy ra từ tuần trước của tuần trước của tuần trước của tuần trước vào thứ vui ngày buồn tháng nhớ năm thương, sự việc xảy ra vào lúc 19.30, tại thư viện, lúc đó ☆》Hãčķěř《☆ đang đọc sách thì bỗng dưng có 1 đứa con gái đi đến, nó hỏi: Đứa con gái: Cậu ơi!. ☆》Hãčķěř《☆: Ơi. Đứa con gái: Cậu biết dùng google không. ☆》Hãčķěř《☆: Google á, ai chả biết dùng google. Đứa con gái: Thế chỉ cho tớ cách với, tớ tìm mãi tìm mãi mà cũng không tìm được cách để vào được trái tim cậu. Theo như trên mạng thì 2 bọn họ phải cười với nhau nhưng đây thì... ☆》Hãčķěř《☆: Dẹp Dẹp Dẹp! Cút!. Đứa con gái: Ơ, sao cậu phũ thế!. ☆》Hãčķěř《☆: BINH BINH BỐP BỐP!( Vâng và cuối cùng mọi người tự hiểu ạ !). Mọi người ai thích trà sữa thì vào team mình nha! O w O // Gương kia ngự ở trên tường…bao giờ ta gặp được người yêu ta… gương cười gương bảo lại rằng : “Mặt mày mà có người yêu tao quỳ”.Chán thả thính rồi, giờ ai cưa tự đổ!

  • Tên: ☆》Hãčķěř《☆ _❷ⓚ❷ _ Ϯëą๓ _ Trà _ Sữa
  • Đang học tại: 
  • Địa chỉ: - 
  • Điểm hỏi đáp: 0SP, 0GP
  • Điểm hỏi đáp tuần này: 0SP, 0GP
  • Thống kê hỏi đáp

Luyện toán

0 -Trung bình 6.00 - Tổng điểm 60

Luyện văn - Tiếng Việt

0 -Trung bình 0.00 - Tổng điểm 

Luyện Tiếng Anh

0 -Trung bình 0.00 - Tổng điểm

29 tháng 1 2020

Ai trả lời đúng từ câu a- câu c có cả hìnhlà một chiếc thẻ cào 50k (tuỳ mọi loại thẻ bạn muốn chọn) và để địa chỉ email phía bên dưới câu trả lời. ♡♡♡

17 tháng 1 2020

giả sử x,y là nghiệm nguyên dương của phương trình \(xy-4x=35-5y\)

Ta có pt\(xy-4x=35-5y\)

\(\Leftrightarrow x\left(y-4\right)+5y=35\)

\(\Leftrightarrow x\left(y-4\right)+5y-20=15\)

\(\Leftrightarrow x\left(y-4\right)+5\left(y-4\right)=15\)

\(\Leftrightarrow\left(y-4\right)\left(x+5\right)=15\)

Vì \(x\in N\Rightarrow x+5\in N\)và \(x+4>0\)

\(\Rightarrow y-4>0\)và \(y-4\in N\)

Đó lập bảng làm nốt nhé chị 

17 tháng 1 2020

Dòng thứ 3 từ dưới lên em ghi nhầm phải  là \(x+5>0\)nhé

16 tháng 1 2020

Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo nhé!

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0
13 tháng 1 2020

\(\hept{\begin{cases}x+y=z\left(1\right)\\x^3+y^3=z^2\left(2\right)\end{cases}}\)

Ta thế (1) vào (2) : \(\left(x+y\right)^3-3xy\left(x+y\right)=\left(x+y\right)^2\)

<=> \(\left(x+y\right)^2-3xy=\left(x+y\right)\)

Đặt: \(x+y=S;xy=P\)vì x, y nguyên dương => S; P nguyên dương

ĐK để tồn tại nghiệm x, y là: \(S^2\ge4P\)

Có: \(S^2-3P=S\)

=> \(S+3P\ge4P\)<=> \(S\ge P\)

=> \(S^2-S=3P\le3S\)

<=> \(0\le S\le4\)

+) S = 0 loại

+) S = 1 => P = 0 loại 

+) S = 2 => P =3/2 loại 

+) S = 3 => P = 2

=> \(\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)<=> x =2; y =1 hoặc x = 1; y =2 

=>  (x; y; z ) = ( 1; 2; 3) thử lại thỏa mãn

 hoặc (x; y; z) = ( 2; 1; 3 ) thử lại thỏa mãn

+) S = 4 => P = 4 

=> \(\hept{\begin{cases}x+y=4\\xy=4\end{cases}\Leftrightarrow}x=y=2\)

=> (x; y; z ) = ( 2; 2; 4) thử lại thỏa mãn.

Vậy: có 3 nghiệm là:....