K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6

Bạn bỏ are đi bạn nhé!

Sửa lại:

They usually vistit to their grandpa twice a month.

4 tháng 6

Bn có thể giải thích giúp mik đc ko ạ

a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)

nên AEHF là tứ giác nội tiếp

DT
4 tháng 6

Cách 1:

Nửa chu vi HCN:  \(\dfrac{35}{2}\) (m)

Gọi chiều rộng HCN là: \(x\left(m\right)\left(ĐK:0< x< \dfrac{35}{4}\right)\)

=> Chiều dài HCN là: \(\dfrac{35}{2}-x\) (m)

Áp dụng định lí pytago, ta được pt:

\(x^2+\left(\dfrac{35}{2}-x\right)^2=20^2\\ \Leftrightarrow x^2+\dfrac{1225}{4}-35x+x^2=400\\ \Leftrightarrow2x^2-35x-\dfrac{375}{4}=0\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{35+5\sqrt{79}}{4}\left(loại\right)\\x=\dfrac{35-5\sqrt{79}}{4}\left(loại\right)\end{matrix}\right.\)

Vậy không tìm được độ dài 2 cạnh mảnh đất HCN thỏa mãn đề bài

Cách 2:

Nhận thấy: Trong tam giác tổng độ dài 2 cạnh bằng 35/2m < độ dài cạnh còn lại: 20m ( Vô lí )

Vậy không tìm được độ dài hai cạnh mảnh đất HCN thỏa mãn đề bài (Theo BĐT tam giác)

a: Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

=>AD\(\perp\)CB tại D

Xét tứ giác AHDC có \(\widehat{AHC}=\widehat{ADC}=90^0\)

nên AHDC là tứ giác nội tiếp

 

Câu c được k bạn

3 tháng 6

Giúp mk với ạ tối trước 10h mk phải nộp r

3 tháng 6

1 journalist

2 unusual

3 risky

4 satisfying

5 adventrous

6 politician

7 Photographing

8 action

Gọi số bạn nam là x(bạn), số bạn nữ là y(bạn)

(Điều kiện: \(x,y\in Z^+\))

Nếu mỗi nhóm có 4 nam và 3 nữ thì thừa 1 bạn nữ nên ta có:

\(\dfrac{x}{4}=\dfrac{y-1}{3}\)

=>3x=4(y-1)

=>3x-4y=-4(1)

Nếu mỗi nhóm có 5 nam và 4 nữ nên ta có: \(\dfrac{x}{5}=\dfrac{y}{4}\)

=>4x=5y

=>4x-5y=0(2)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}3x-4y=-4\\4x-5y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x-16y=-16\\12x-15y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}12x-16y-12x+15y=-16-0\\4x=5y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=16\\4x=5\cdot16=80\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=16\\x=20\end{matrix}\right.\left(nhận\right)\)

Vậy: Có 20 nam và 16 nữ

3 tháng 6

Gọi số bạn nam là x(bạn), số bạn nữ là y(bạn)

(Điều kiện: 𝑥,𝑦∈𝑍+)

Nếu mỗi nhóm có 4 nam và 3 nữ thì thừa 1 bạn nữ nên ta có:

𝑥4=𝑦−13

=>3x=4(y-1)

=>3x-4y=-4(1)

Nếu mỗi nhóm có 5 nam và 4 nữ nên ta có: 𝑥5=𝑦4

=>4x=5y

=>4x-5y=0(2)

Từ (1),(2) ta có hệ phương trình:

{3𝑥−4𝑦=−44𝑥−5𝑦=0⇔{12𝑥−16𝑦=−1612𝑥−15𝑦=0

=>{12𝑥−16𝑦−12𝑥+15𝑦=−16−04𝑥=5𝑦

=>{𝑦=164𝑥=5⋅16=80

=>{𝑦=16𝑥=20(𝑛ℎậ𝑛)

a: Thay x=20 và y=20 vào y=ax+b, ta được:

\(a\cdot20+b=20\)

=>20a+b=20(1)

Thay x=30 và y=25 vào y=ax+b, ta được:

\(a\cdot30+b=25\)

=>30a+b=25(2)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}30a+b=25\\20a+b=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10a=5\\20a+b=20\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=20-20a=20-20\cdot\dfrac{1}{2}=20-10=10\end{matrix}\right.\left(nhận\right)\)

 

 

a: Thay x=20 và y=20 vào y=ax+b, ta được:

𝑎⋅20+𝑏=20

=>20a+b=20(1)

Thay x=30 và y=25 vào y=ax+b, ta được:

𝑎⋅30+𝑏=25

=>30a+b=25(2)

Từ (1),(2) ta có hệ phương trình:

{30𝑎+𝑏=2520𝑎+𝑏=20⇔{10𝑎=520𝑎+𝑏=20

=>{𝑎=12𝑏=20−20𝑎=20−20⋅12=20−10=10(𝑛ℎậ𝑛)