K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2023

Chứng minh chiều thuận:

Giả sử có tam giác ABC cân tại A, đương nhiên trung tuyến và phân giác kẻ từ A của tam giác này trùng nhau. Mà trọng tâm D thuộc trung tuyến kẻ từ A, giao điểm các đường phân giác trong E thuộc phân giác trong kẻ từ A nên AD, AE trùng nhau, do đó A, D, E thẳng hàng.

Chứng minh chiều đảo:

Giả sử A, D, E thẳng hàng. Dễ thấy rằng khi đó AD, AE lần lượt là trung tuyến và phân giác trong của tam giác ABC. Mà A, D, E thẳng hàng \(\Rightarrow AD\equiv AE\), do đó tam giác ABC cân tại A (Dấu hiệu nhận biết)

1 tháng 1 2023

À không, xin lỗi bạn, bài đó mình làm lộn đề đó. Bài này mới đúng nhé:

thuận: (giả sử tam giác ABC cân tại A):

Khi đó \(\widehat{ABC}=\widehat{ACB}\). Mà BD, CD là 2 trung tuyến kẻ từ B, C nên \(BD=CD\) \(\Rightarrow\widehat{DBC}=\widehat{DCB}\). Từ đó dễ thấy \(\widehat{DBA}=\widehat{DCA}\), mà BE, CE là các phân giác của \(\widehat{DBA},\widehat{DCA}\) nên \(\widehat{DBE}=\widehat{DCE}\). Từ đây dễ thấy \(\widehat{EBC}=\widehat{ECB}\)  \(\Rightarrow EB=EC\). Do đó, E nằm trên đường trung trực của đoạn BC.

Mà AD chính là trung trực của BC (Do tam giác ABC cân tại A có AD là trung tuyến) \(\Rightarrow E\in AD\Rightarrowđpcm\)

đảo: (giả sử A,D,E thẳng hàng)

Ta thấy AD chính là trung trực của đoạn BC, mà A,D,E thẳng hàng nên E thuộc trung trực của BC \(\Rightarrow EB=EC\Rightarrow\widehat{EBC}=\widehat{ECB}\)

Đồng thời \(\widehat{DBC}=\widehat{DCB}\) , từ đó \(\Rightarrow\widehat{DBE}=\widehat{DCE}\)

Mà BE, CE lần lượt là phân giác của \(\widehat{DBA},\widehat{DCA}\) nên \(\widehat{DBA}=\widehat{DCA}\). Bằng phép cộng góc, ta dễ dàng suy ra \(\widehat{ABC}=\widehat{ACB}\) \(\Rightarrow\Delta ABC\) cân tại A.

AH
Akai Haruma
Giáo viên
31 tháng 12 2022

Yêu cầu đề là gì bạn cần ghi rõ ra nhé.

30 tháng 12 2022

Đặt \(x^{1003}=a;y^{1003}=b;1003=c\). Khi đó điều kiện đã cho 

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=c\\a^2+b^2=2c\end{matrix}\right.\)

Ta có \(a^2+b^2=2c\Leftrightarrow\left(a+b\right)^2=2c+2ab\) \(\Leftrightarrow c^2-2c=2ab\) \(\Leftrightarrow ab=\dfrac{c^2-2c}{2}\)

Từ đó \(x^{3009}+y^{3009}=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\) \(=c\left(2c-\dfrac{c^2-2c}{2}\right)\) \(=\dfrac{6c^2-c^3}{2}\) \(=\dfrac{6.1003^2-1003^3}{2}=-501495486,5\)

(mình tính đúng luôn nhé)

 

31 tháng 12 2022

e cảm ơn

29 tháng 12 2022

\(P=\left(\dfrac{1}{2\sqrt{x}}-\dfrac{x}{2\sqrt{x}}\right)^2.\left(\dfrac{\left(\sqrt{x}-1\right)^2}{x-1}-\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}\right)\)

\(=\left(\dfrac{1-x}{2\sqrt{x}}\right)^2.\left(\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)

\(=\dfrac{\left(1-x\right)^2}{2\sqrt{x}}.\dfrac{-4\sqrt{x}}{-\left(1-x\right)}\)

\(=\left(1-x\right).2\sqrt{x}\)

\(=2\sqrt{x}-2x\sqrt{x}\)

 

29 tháng 12 2022

ĐKXĐ :\(\left\{{}\begin{matrix}x+1\ge0\\x^2+1\ge0\end{matrix}\right.\Leftrightarrow x\ge-1\)

Khi đó \((x^2+4x+5)\sqrt{x+1}=(3x^2-8x-5)\sqrt{x^2+1}\)

\(\Leftrightarrow(x^2+1)\sqrt{x+1}+4(x+1)\sqrt{x+1}=3(x^2+1)\sqrt{x^2+1}-8(x+1)\sqrt{x^2+1}\)

Đặt \(\sqrt{x+1}=a;\sqrt{x^2+1}=b(a\ge0;b>0)\)

Phương trình trở thành :

\(4a^3+ab^2=3b^3-8a^2b\)

\(\Leftrightarrow4(a^3+b^3)+b(8a^2+ab-7b^2)=0\)

\(\Leftrightarrow(a+b)(4a^2-4ab+4b^2)+(a+b)(8ab-7b^2)=0\)

\(\Leftrightarrow(a+b)(4a^2+4ab-3b^2)=0\)

\(\Leftrightarrow\left(a+b\right)\left(2a-b\right)\left(2a+3b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0(\text{loại})\\2a-b=0\\2a+3b=0(\text{loại})\end{matrix}\right.\Leftrightarrow2a=b\) (vì \(\left\{{}\begin{matrix}a\ge0\\b>0\end{matrix}\right.\) nên a+b>0 ; 2a +3b > 0)

Trở lại cách đặt ta được 

\(2\sqrt{x+1}=\sqrt{x^2+1}\Leftrightarrow x^2-4x-3=0\)

\(\Leftrightarrow x=\pm\sqrt{7}+2\) (loại \(x=-\sqrt{7}+2\))

Vậy x = \(\sqrt{7}+2\) là nghiệm phương trình