Cho hai số dương a;b thỏa mãn a+b=1 . Chứng minh rằng \(\frac{1}{ab}\)+ \(\frac{1}{a^2+b^2}\)\(\ge\)6
Giups mk vs !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi: 36 phút = \(\frac{3}{5}\)giờ
Gọi thời gian lúc đi là t (giờ) ( \(t\inℕ^∗\))
Vì thời gian đi ít hơn thời gian về là 36 phút hay \(\frac{3}{5}\)giờ
\(\Rightarrow\)Thời gian về là \(t+\frac{3}{5}\)(giờ)
Theo để bài, ta có phương trình: \(50t=40\left(t+\frac{3}{5}\right)\)
\(\Leftrightarrow50t=40t+40.\frac{3}{5}\)\(\Leftrightarrow50t=40t+24\)
\(\Leftrightarrow50t-40t=24\)\(\Leftrightarrow10t=24\)\(\Leftrightarrow t=2,4\)( giờ )
\(\Rightarrow\)Quãng đường AB dài: \(50.2,4=120\)(km)
Vậy quãng đường AB dài 120 km
Gọi t(h) là thời gian đi ( t>0,5)
- Quãng đường AB ( tính theo lúc đi) 35t
- Quãng đường AB(tính theo lúc về) 42(t-0,5)
Ta có phương trình: 35t=42(t−0,5)35t=42(t−0,5)
giải phương trình: 35t=42(t−0,5)35t=42(t−0,5)
⇔35t=42t−21⇔35t=42t−21
⇔−7t=−21⇔−7t=−21
⇔t=3⇔t=3
Quãng đường AB dài là: 35.3=105(km)
a)\(ĐKXĐ:x\ne m;x\ne2\)
\(\frac{x+1}{m-x}=\frac{x+4}{x-2}\)
\(\Leftrightarrow\left(m-x\right)\left(x+4\right)=\left(x+1\right)\left(x-2\right)\)
\(\Leftrightarrow-x^2+\left(m-4\right)x+4m=x^2-x-2\)
\(\Leftrightarrow-2x^2+\left(m-3\right)x+\left(4m+2\right)=0\)
Để phương trình vô nghiệm thì \(\Delta< 0\)
hay \(\left(m-3\right)^2-4.\left(-2\right).\left(4m+2\right)< 0\)
\(\Leftrightarrow m^2-6m+9+32m+16< 0\)
\(\Leftrightarrow m^2+26m+25< 0\)
\(\Leftrightarrow m^2+26m+169-144< 0\)
\(\Leftrightarrow\left(m+13\right)^2< 144\)
\(\Leftrightarrow\orbr{\begin{cases}m+13< 12\\m+13>-12\end{cases}}\Leftrightarrow\orbr{\begin{cases}m< -1\\m>-25\end{cases}}\)
b) \(ĐKXĐ:x\ne m;x\ne1\)
\(1+\frac{2x+1}{m-x}=\frac{3x-5}{x-1}\)
\(\Leftrightarrow\frac{x+1+m}{m-x}=\frac{3x-5}{x-1}\)
\(\Leftrightarrow\left(x+1+m\right)\left(x-1\right)=\left(3x-5\right)\left(m-x\right)\)
\(\Leftrightarrow x^2+mx-m-1=3xm-5m-3x^2+5x\)
\(\Leftrightarrow4x^2-\left(2m+5\right)x+\left(4m-1\right)=0\)
Để phương trình vô nghiệm thì \(\Delta< 0\)
\(\Rightarrow\left(2m+5\right)^2-4.4.\left(4m-1\right)=4m^2-44m+41< 0\)
\(\Rightarrow4m^2-44m+121-80< 0\)
\(\Rightarrow\left(2m-11\right)^2< 80\)
\(\Rightarrow\orbr{\begin{cases}2m-11< \sqrt{80}\\2m-11>-\sqrt{80}\end{cases}}\)
Vậy \(\orbr{\begin{cases}m< \frac{\sqrt{80}+11}{2}\\m>-\frac{\sqrt{80}+11}{2}\end{cases}}\)
Bài 2:
Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)
\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)
Tìm GTNN:
Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)
\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)
\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)
Chúc bạn học tốt.
Làm bài 1 ha :)
Áp dụng BĐT Cô si ta có:
\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)
Khi đó:
\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)
Giống Holder ghê vậy ta :D
\(P=\frac{1}{16}\left(4x^2+4x+7\right)\left(2x+1\right)^2+\frac{9}{16}\ge\frac{9}{16}\)
"=" \(\Leftrightarrow x=-\frac{1}{2}\)
P=x4+2x3+3x2+2x+1
= x^4 + 2x^2(x + 1) + x^2 + 2x + 1
= x^4 + 2x^2(x + 1) + (x + 1)^2
= (x^2 + x + 1)^2 > 0
xét P = 0 khi x^2 + x + 1 = 0
<=> (x+1/2)^2 + 3/4 = 0
<=> (x+1/2)^2 = -3/4
=> x thuộc tập hợp rỗng
A= \(x.\left\{\left[x.\left(x^2-7\right)\right]^2-6^2\right\}=x.\left[x.\left(x^2-7\right)-6\right].\left[x.\left(x^2-7\right)+6\right]\)
A=\(x.\left[x^3-7x-6\right].\left[x^3-7x+6\right]\)
A= \(x.\left(x-3\right).\left(x+1\right).\left(x+2\right).\left(x+3\right).\left(x-1\right).\left(x-2\right)\)
a) + ∆ABO có IM // AO
⇒ OB/IB = AO/IM (1)
+ ∆IDP có AO // IP
⇒ ID/OD = IP/OA (2)
Nhân (1) với (2), ta được :
OB/IB . ID/OD = AO/IM . IP/OA ⇔ ID/IB . OB/OD = IP/IM (ĐPCM)
b) + ∆OBC có IN // OC
⇒ BO/IB = OC/IN (3)
+ ∆DQI có OC // IQ ⇒ ID/OD = IQ/OC (4)
Nhân (3) với (4) , ta được :
BO/IB . ID/OD = OC/IN . IQ/OC ⇔ ID/IB . OB/OD = IQ/IN (5)
+ Theo câu a) , ta có : ID/IB . OB/OD = IP/IM (6)
Từ (5) và (6) suy ra : IP/IM = IQ/IN (dpcm)
a) \(\Delta\)AOB có: MI //AO \(\Rightarrow\frac{MI}{AO}=\frac{IB}{OB}\)
\(\Delta\)DPI có: AO//IP
\(\Rightarrow\frac{OA}{IP}=\frac{OD}{ID}\)
\(\Rightarrow\frac{MI}{AO}\cdot\frac{AO}{IP}=\frac{IB}{BO}\cdot\frac{OD}{IID}\)
\(\Rightarrow\frac{MI}{IP}=\frac{IB}{ID}\cdot\frac{OD}{OB}\)
b) \(\Delta DIQ\)có: OC // IQ \(\Rightarrow\frac{OC}{IQ}=\frac{OD}{ID}\left(1\right)\)
\(\Delta BOC\)có: IN//OC \(\Rightarrow\frac{IN}{DC}=\frac{BI}{BD}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\hept{\begin{cases}\frac{OC}{IQ}=\frac{IN}{OC}=\frac{OD}{ID}\cdot\frac{BI}{BO}\\\frac{IN}{IQ}=\frac{IB}{ID}\cdot\frac{OD}{OB}\end{cases}}\)
Theo câu (a) có: \(\frac{IM}{IP}=\frac{IB}{ID}\cdot\frac{OD}{OB}\)
\(\Rightarrow\frac{IM}{IP}=\frac{IN}{IQ}\left(đpcm\right)\)
\(\frac{1}{ab}+\frac{1}{a^2+b^2}\)
\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)
\(\ge\frac{4}{a^2+2ab+b^2}+\frac{1}{2ab}\)
\(\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{2\cdot\left(\frac{a+b}{2}\right)^2}\)
\(=6\)
Dấu "=" xảy ra tại a=b=1/2