Cho a,b,c>0 có a+b+c=1. CMR:
\(\frac{19b^3-a^3}{ba+5b^2}+\frac{19c^3-b^3}{bc+5c^2}+\frac{19a^3-c^3}{ac+5a^2}\le3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ac}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)
Áp dụng BĐT cosi
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{3}{4}a\)
Tương tự
=> \(A\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)=\frac{1}{4}\left(a+b+c\right)\)
Lại có \(\left(a+b+c\right)\ge\frac{9}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{9}{1}=9\)
=> \(A\ge\frac{9}{4}\)
MinA=9/4 khi a=b=c=3
\(A=\sqrt{2x^2-4x+3}+3\)
Ta có: \(2x^2-4x+3\)
\(=2\left(x^2-2x+\frac{3}{2}\right)\)
\(=2\left(x^2-2.x.1+1^2+\frac{1}{2}\right)\)
\(=2[\left(x-1\right)^2+\frac{1}{2}]\)
\(=2\left(x-1\right)^2+1\ge1\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}+3\ge3+\sqrt{1}=4\)
\(\Rightarrow MinA=4\Leftrightarrow x=1\)
a)\(\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{3-2\sqrt{6}+2}\)
\(=\sqrt{3-2\sqrt{2}\sqrt{3}+2}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(\left|\sqrt{3}-\sqrt{2}\right|\)
\(a,\sqrt{5-2\sqrt{6}}=\left(\sqrt{2}-\sqrt{3}\right)^2=|\sqrt{2}-\sqrt{3}|=\sqrt{3}-\sqrt{2}\)
\(b,\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-\left(20-10\sqrt{3}\right)}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)
\(=\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}\)
\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)
\(=\sqrt{25}=5\)
\(c,\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)
\(=\sqrt{\left(3\sqrt{5}-7\right)^2}-\sqrt{\left(3\sqrt{5}+7\right)^2}\)
\(=|3\sqrt{5}-7|-|3\sqrt{5}+7|\)
\(=7-3\sqrt{5}-3\sqrt{5}-7\)
\(=-6\sqrt{5}\)
#)Giải :
\(A=\frac{\sqrt{x+1}}{\sqrt{x-2}}+\frac{2\sqrt{x}}{\sqrt{x+2}}+\frac{2+5\sqrt{x}}{4-x}\)
\(A=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{2+5\sqrt{x}}{x-4}\)
\(A=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(A=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(A=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(A=\frac{3\sqrt{x}}{\sqrt{x}+2}\)
Vậy \(A=\frac{3\sqrt{x}}{\sqrt{x}+2}\)
\(A-1=\frac{x-2\sqrt{x}+1}{\sqrt{x}}=\frac{(\sqrt{x}-1)^2}{\sqrt{x}}\ge0\)\(\Rightarrow A\ge1\)
\(6x+\sqrt{x+2}+2\sqrt{3-x}=8\sqrt{6+x-x^2}.\)
\(6x+\sqrt{x+2}+2\sqrt{3-x}=8\sqrt{-x^2+x+6}\)
\(6x+\sqrt{x+2}+2\sqrt{3-x}=8\sqrt{-x^2-3x+2x+6}\)\(6x+\sqrt{x+2}+2\sqrt{3-x}=8\sqrt{-\left(x^2+3x-2x-6\right)}\)
\(6x+\sqrt{x+2}+2\sqrt{3-x}=8\sqrt{-\left[x\left(x+3\right)-2\left(x+3\right)\right]}\)
\(6x+\sqrt{x+2}+2\sqrt{3-x}=8\sqrt{-\left(x+3\right)\left(x-2\right)}\)
\(6x+\sqrt{x+2}+2\sqrt{3-x}=8\sqrt{\left(3-x\right)\left(x-2\right)}\)
Từ đây giải tiếp ạ.
Cần chứng minh: \(\frac{19b^3-a^3}{ab+5b^2}\le4b-a\)
Thật vậy: \(\frac{19b^3-a^3}{ab+5b^2}\le4b-a\Leftrightarrow\left(4b-a\right)\left(ab+5b^2\right)-19b^3+a^3\ge0\)
\(\Leftrightarrow4ab^2+20b^3-a^2b-5ab^2-19b^3+a^3\ge0\)
\(\Leftrightarrow\left(a^3+b^3\right)-ab\left(a+b\right)\ge0\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(đúng)
"=" khi a=b
Tương tự: \(\frac{19c^3-b^3}{bc+5c^2}\le4c-b;\frac{19a^3-c^3}{ac+5a^2}\le4a-c\)
Cộng theo vế:
\(\frac{19b^3-a^3}{ab+5b^2}+\frac{19c^3-b^3}{bc+5c^2}+\frac{19a^3-c^3}{ac+5a^2}\le4b-a+4c-b+4a-c=3\left(a+b+c\right)=3\)
Dấu "=" xảy ra khi a=b=c=1/3