K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2024

3 đường cao

 

4 tháng 1 2024

3 đường cao

AH
Akai Haruma
Giáo viên
6 tháng 1 2024

Lời giải:
$S_{ABC}=AH\times BC:2=12\times 20:2=120$ (cm2)

$\frac{S_{ABM}}{S_{ABC}}=\frac{BM}{BC}=\frac{1}{2}$ (do $M$ là trung điểm $BC$)

$S_{ABM}=\frac{1}{2}\times S_{ABC}=\frac{1}{2}\times 120=60$ (cm2)

4 tháng 1 2024

Từ 25 đến 129 có số 30

Do đó chữ số tận cùng của tích là chữ số 0

4 tháng 1 2024

\(25\rightarrow129\) có số \(30\)

Lấy \(0\) nhân với tận cùng của các số còn lại vẫn bằng \(0\)

Vậy tích các STN từ \(25\) đến \(129\) có chữ số tận cùng là \(0\)

4 tháng 1 2024

\(7⋮\left(x+1\right)\Rightarrow\left(x+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ Có:x+1=-7\Rightarrow x=-8\\ x+1=-1\Rightarrow x=-2\\ x+1=1\Rightarrow x=0\\ x+1=7\Rightarrow x=6\\ Vậy:x\in\left\{-8;-2;0;6\right\}\)

4 tháng 1 2024

Ta có:

\(7⋮\left(x+1\right)\Rightarrow x+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta có bảng sau:

\(x+1\) \(1\) \(-1\) \(7\) \(-7\)
\(x\) \(0\) \(-2\) \(6\) \(-8\)

Vậy \(x\in\left\{0;-2;6;-8\right\}\)

 

NV
4 tháng 1 2024

\(\Leftrightarrow\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{375}{376}\)

\(\Leftrightarrow1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{375}{376}\)

\(\Leftrightarrow1-\dfrac{1}{x+3}=\dfrac{375}{376}\)

\(\Leftrightarrow\dfrac{1}{x+3}=1-\dfrac{375}{376}=\dfrac{1}{376}\)

\(\Rightarrow x+3=376\)

\(\Rightarrow x=373\)

4 tháng 1 2024

2964794 : 1111 = 2668,5823

Cho 1 like

4 tháng 1 2024

=2668,582358

cho like

NV
4 tháng 1 2024

a.

Do M là trung điểm SA, O là trung điểm AC

\(\Rightarrow OM\) là đường trung bình tam giác SAC \(\Rightarrow OM||SC\Rightarrow OM||\left(SBC\right)\) (1)

N là trung điểm CD, O là trung điểm AC \(\Rightarrow ON\) là đường trung bình ACD

\(\Rightarrow ON||AD\Rightarrow ON||BC\Rightarrow ON||\left(SBC\right)\) (2)

Mà \(ON\cap OM=O\)  ; \(OM;ON\in\left(OMN\right)\) (3)

(1);(2);(3) \(\Rightarrow\left(OMN\right)||\left(SBC\right)\)

b.

J cách đều AB, CD \(\Rightarrow J\) thuộc đường thẳng d qua O và song song AB, CD

- Nếu J trùng O \(\Rightarrow OI\) là đường trung bình tam giác SBD \(\Rightarrow OI||SB\Rightarrow OI||\left(SAB\right)\)

Hay \(IJ||\left(SAB\right)\)

- Nếu J không trùng O, ta có \(\left\{{}\begin{matrix}IO||SB\left(đtb\right)\Rightarrow IO||\left(SAB\right)\\d||AB\Rightarrow IJ||AB\Rightarrow OJ||\left(SAB\right)\end{matrix}\right.\)

\(\Rightarrow\left(OIJ\right)||\left(SAB\right)\Rightarrow IJ||\left(SAB\right)\)

4 tháng 1 2024

a.

Do M là trung điểm SA, O là trung điểm AC

⇒��OM là đường trung bình tam giác SAC ⇒��∣∣��⇒��∣∣(���)OM∣∣SCOM∣∣(SBC) (1)

N là trung điểm CD, O là trung điểm AC ⇒��ON là đường trung bình ACD

⇒��∣∣��⇒��∣∣��⇒��∣∣(���)ON∣∣ADON∣∣BCON∣∣(SBC) (2)

Mà ��∩��=�ONOM=O  ; ��;��∈(���)OM;ON(OMN) (3)

(1);(2);(3) ⇒(���)∣∣(���)(OMN)∣∣(SBC)

b.

J cách đều AB, CD ⇒�J thuộc đường thẳng d qua O và song song AB, CD

- Nếu J trùng O ⇒��OI là đường trung bình tam giác SBD ⇒��∣∣��⇒��∣∣(���)OI∣∣SBOI∣∣(SAB)

Hay ��∣∣(���)IJ∣∣(SAB)

- Nếu J không trùng O, ta có {��∣∣��(đ��)⇒��∣∣(���)�∣∣��⇒��∣∣��⇒��∣∣(���){IO∣∣SB(đtb)IO∣∣(SAB)d∣∣ABIJ∣∣ABOJ∣∣(SAB)

⇒(���)∣∣(���)⇒��∣∣(���)(OIJ)∣∣(SAB)IJ∣∣(SAB)

NV
4 tháng 1 2024

10B

11B

12B