với các so thực x,y thoa mãn \(x-\sqrt{x+6}=\sqrt{y+6}-y\)
tìm giá trị lớp nhất và giá trị nhỏ nhất của biểu thức p=x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 0<x<1<=>\(\sqrt{0}\)<\(\sqrt{x}\)<\(\sqrt{1}\)<=>0<\(\sqrt{x}\)<1 (1)
Nhân cả hai vế của bất đẳng thức \(\sqrt{x}\) <1 với \(\sqrt{x}\)ta được
\(\sqrt{x}\).\(\sqrt{x}\)<1.\(\sqrt{x}\)
<=> x <\(\sqrt{x}\)
<=> 0 <\(\sqrt{x}\)-x
hay\(\sqrt{x}\)-x>0(đpcm)
Vậy...
KHÔNG BIẾT ĐÚNG KO , SAI THÔI NHA
Xét \(\sqrt{x}-x\) = \(-\left(x-\sqrt{x}\right)\)
= \(-\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}\)
= \(\frac{1}{4}-\left(\sqrt{x}-\frac{1}{2}\right)^2\)
\(\left(\sqrt{x}-\frac{1}{2}\right)^2< \frac{1}{4}với.0< x< 1\)
\(\Rightarrow\frac{1}{4}-\left(\sqrt{x}-\frac{1}{2}\right)^2>0\) với 0<x<1
hay \(\sqrt{x}-x>0\)với 0 <x<1
#mã mã#
\(A=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\frac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\frac{x\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{x\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left(1-\frac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(Đkxđ:\)
\(\sqrt{x}\ge0\Rightarrow x\ge0\)
\(\sqrt{x}-1\ne0\Rightarrow\sqrt{x}\ne1\Rightarrow x\ne1\)
\(\sqrt{x}\ne0\Rightarrow x\ne0\)
\(\RightarrowĐkxđ:x>0;x\ne1\)
\(A=\left(\frac{x\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{x\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left(1-\frac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\frac{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(x\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{\sqrt{x}+1-3+\sqrt{x}}{\sqrt{x}+1}\)
\(=\frac{x^2+x\sqrt{x}-\sqrt{x}-1-x^2+x\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2\sqrt{x}-2}{\sqrt{x}+1}\)
\(=\frac{2x\sqrt{x}-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}+1}{2\sqrt{x}-2}\)
\(=\frac{2\sqrt{x}\left(x-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}}\)
\(A=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right)\)\(:\left(1-\frac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\frac{\sqrt{x}^3-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}^3+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\)\(\left(\frac{\sqrt{x}+1-3+\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)\(:\left(\frac{2\sqrt{x}-2}{\sqrt{x}+1}\right)\)
\(=\left(\frac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\right):\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(=\frac{2\sqrt{x}}{\sqrt{x}}.\frac{\sqrt{x}+1}{2\cdot\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
1. \(Q=-\frac{1}{\sqrt{x}-3}\)
để Q nguyên thì \(\sqrt{x}-3\inƯ\left(1\right)=\left(-1;1\right)\)
\(\sqrt{x}-3=-1\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(\sqrt{x}-3=1\Rightarrow\sqrt{x}=4\Rightarrow x=16\)
2. \(Q=\frac{\sqrt{x}-3}{\sqrt{x}-1}=1-\frac{2}{\sqrt{x}-1}\)
Để Q nguyên thì \(\sqrt{x}-1\inƯ\left(2\right)=\left(-2;-1;1;2\right)\)
\(\sqrt{x}-1=-2\Rightarrow\sqrt{x}=-1VN\)
\(\sqrt{x}-1=-1\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
\(\sqrt{x}-1=1\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(\sqrt{x}-1=2\Rightarrow\sqrt{x}=3\Rightarrow x=9\)
\(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{\sqrt{a}-\sqrt{b}}\)
\(=\frac{\sqrt{a}+\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}-\frac{2b}{\sqrt{a}-\sqrt{b}}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+b\right)}-\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{4b\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2-4b\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}\right)-4\sqrt{a}b-4b\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{2\sqrt{a}.2\sqrt{b}-4\sqrt{a}b-4b\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{4\sqrt{a}\sqrt{b}-4\sqrt{a}b-4b\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{4\sqrt{a}\sqrt{b}\left(1-\sqrt{b}-b\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{2\sqrt{a}\sqrt{b}\left(1-\sqrt{b}-b\right)}{a-b}\)
Đề sai???Phân số thứ 3 nghi là a-b chứ ko phải căn a - căn b????????
\(ĐKXĐ:\hept{\begin{cases}x-4\ne0\\3-\sqrt{x}\ne0\\x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne4\\\sqrt{x}\ne3\\x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne4\\x\ne9\\x\ge0\end{cases}}\)
Rút gọn
\(D=\left(\frac{x-2\sqrt{x}}{x-4}-1\right):\left(\frac{4-x}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
\(D=\left(\frac{x-2\sqrt{x}}{x-4}-\frac{x-4}{x-4}\right):\left(\frac{4-x}{x+2\sqrt{x}-3\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
\(D=\left(\frac{x-2\sqrt{x}-x+4}{x-4}\right):\left(\frac{4-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-2}{3-\sqrt{x}}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
\(D=\left(\frac{-2\sqrt{x}+4}{x-4}\right):\left(\frac{4-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
\(D=\left(\frac{-2\sqrt{x}+4}{x-4}\right):\left(\frac{4-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\right)\)
\(D=\left(\frac{-2\sqrt{x}+4}{x-4}\right):\left(\frac{4-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\right)\)
\(D=\left(\frac{-2\sqrt{x}+4}{x-4}\right):\left(\frac{4-x-\left(\sqrt{x}+2\right)^2-\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\right)\)
\(D=\left(\frac{-2\sqrt{x}+4}{x-4}\right):\left(\frac{4-x-\left(x+4\sqrt{x}+4\right)-\left(x-6\sqrt{x}+9\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\right)\)
\(D=\left(\frac{-2\sqrt{x}+4}{x-4}\right):\left(\frac{4-x-x^2-4\sqrt{x}-4-x^2+6\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\right)\)
\(D=\left(\frac{-2\sqrt{x}+4}{x-4}\right):\left(\frac{-2x^2-x-2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\right)\)
\(D=\frac{\left(-2\right)\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(x-4\right)\left(-2x^2-x-2\sqrt{x}-9\right)}\)
\(D=\frac{\left(-2\right)\left(\sqrt{x}-3\right)\left(x^2-4\right)}{\left(x-4\right)\left(-2x^2-x-2\sqrt{x}-9\right)}\)
Sai thui nhé !!!!