K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

\(\sqrt{x^2+2x+1}+\sqrt{x^4-2x^2+2}=1\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x^2-1\right)^2+1}=1\)

Mà \(\sqrt{\left(x+1\right)^2}+\sqrt{\left(x^2-1\right)^2+1}\ge1\)

nên dấu "=" <=> x = -1

16 tháng 7 2019

\(\sqrt{x^2+2x+1}+\sqrt{x^4-2x^2+2}=1\)

<=> \(\sqrt{x^2+2x+1}=1-\sqrt{x^4-2x^2+2}\)

<=> \(\left(\sqrt{x^2+2x+1}\right)^2=\left(1-\sqrt{x^4-2x^2+2}\right)^2\)

<=> x2 + 2x + 1 = x4 - 2x2 + 3 - 2\(\sqrt{x^4-2x^2+2}\)

<=> x2 + 2x + 1 - (x4 - 2x) = -2\(\sqrt{x^4-2x^2+2}\) - (x4 - 2x)

<=> -x4 + 3x2 + 1 = -2\(\sqrt{x^4-2x^2+2}+3\)

<=> -x4 + 3x+ 1 - 3 = -2\(\sqrt{x^4-2x^2+2}\)

<=> (-x4 + 3x2 - 2)2 = (-2\(\sqrt{x^4-2x^2+2}\))2

<=> x8 - 6x6 - 4x5 + 13x4 + 12x3 - 8x2 - 8x + 4 = 4x4 - 8x2 + 8

<=> x = -1

=> x = -1

22 tháng 7 2019

Đề bn viết thiếu kìa, mk sửa lại nha:

Tìm chữ số x và y sao cho:   \(\overline{xx}^y=\overline{xyyx}\)

Bài giải:

Tìm y: Ta thấy \(y< 4\)vì nếu \(y\ge4\)thì \(\overline{xx}^y\ge11^4>10^4=10000>\overline{xyyx}\)

Mặt khác: \(y>1\)vì nếu \(y\le1\)thì:

                 \(\overline{xx}^y\le xx^1=\overline{xx}< \overline{xyyx}\)

Mà \(y\in N\)nên \(y\in\left\{2;3\right\}\)

Xét : \(y=2\Rightarrow\overline{xx}^2\)cho chữ số tận cùng là \(1;4;5;6;9\)

+ Nếu : \(x=1\)thì \(\overline{xx}^y=11^2=121< 1221\)

\(\Rightarrow\)Loại \(x=1\)

+ Nếu : \(x=4\)thì \(\overline{xx^y}=44^2< 50^2=2500< 4224\)

\(\Rightarrow\)Loại \(x=4\)

+ Nếu : \(x=5\)thì \(\overline{xx^y}=55^2< 60^2=3600< 5225\)

\(\Rightarrow\)Loại \(x=5\)

+ Nếu : \(x=6\)thì \(\overline{xx^y}=66^2< 70^2=4900< 6226\)

\(\Rightarrow\)Loại \(x=6\)

+ Nếu : \(x=9\)thì \(\overline{xx^y}=99^2=9801\ne9229\)

\(\Rightarrow\)Loại \(x=9\)

             \(\Rightarrow\)Loại \(y=2\)

Xét : \(y=3\Rightarrow\overline{xx}^3=\overline{x33x}\)

Ta thấy : \(x< 2\)vì nếu \(x\ge2\)thì:

\(\overline{xx^3}\ge22^3=10648>\overline{x33x}\)

Mặt khác : \(x>0\)mà \(x\in N\)nên \(x=1\)

Ta có: \(11^3=1331\)( thỏa mãn )

Tóm lại : Với \(x=1\)và \(y=3\)thì ta có : \(\overline{xx}^y=\overline{xyyx}\)thỏa mãn đề bài đã ra

Rất vui vì giúp đc bạn !!! Bạn tham khảo nha ^_^

16 tháng 7 2019

Có \(\Delta'=\left(m+4\right)^2-m^2+8=m^2+8m+16-m^2+8=24>0\)

Nên pt có nghiệm với mọi m

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2\left(m+4\right)\\x_1x_2=m^2-8\end{cases}}\)

a,(Phải là GTLN nhá) 

Có \(x_1+x_2-3x_1x_2=2\left(m+4\right)-3\left(m^2-8\right)\)

                                      \(=2m+8-3m^2+24\)

                                      \(=-3m^2+2m+32\)

                                       \(=-3\left(m^2-\frac{2}{3}m+\frac{1}{9}\right)+\frac{95}{3}\)

                                      \(=-3\left(m-\frac{1}{3}\right)^2+\frac{95}{3}\le\frac{95}{3}\)
Dấu "=" <=> m = 1/3

b, Thấy tổng x_1 ; x_2 là bậc 1 của m , tích là bậc 2 của m nên ko tồn tại hệ thức thỏa mãn đề