K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

Gợi ý :

Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)

Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)

Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)

7 tháng 3 2020

bài 3

\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)

=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)

=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)

=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)

=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)

=> x=100

7 tháng 3 2020

Ta có \(q\left(q^2-1\right)=q\left(q-1\right)\left(q+1\right)\)  zì đây là ba số tự nhiên liên tiếp 

=> \(q\left(q^2-1\right)⋮3\)

=>\(p\left(p-1\right)⋮3\)

=>\(p⋮3\)hoặc \(p-1⋮3\)

mà \(p\)là số nguyên tố

=>\(p=3\)

thay p=3 zô phương thức ban đầu ta được \(\left(q-2\right)\left(q^2+2q+3\right)=0=>q=2\)

zậy ..

7 tháng 3 2020

ミ★Hαċкεɾ ²к⁶★彡 Giari thích không rõ ràng nha, chúng ta cs p hoặc p-1 chia hết cho 3. Chứ có phải là p chia hết cho 3 đâu mà suy ra luôn được p = 3?? Vô lí nha !! Nếu thế thì bạn phảo xét từng TH, với p chia hết cho 3, và p-1 chia hết cho 3 nha !

7 tháng 3 2020

TA CÓ \(x^{2018}+y^{2020}+z^{2012}\ge x+y+z.\)

=>\(x^{2018}+y^{2020}+z^{2012}\ge0\)

Dấu bằng xảy ra khi zà chỉ khi

\(\hept{\begin{cases}x^{2018}=0\\y^{2020}=0\\z^{2012}=0\end{cases}=>\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}=>}x=y=z=0.}\)

7 tháng 3 2020

why are you so stupid?

7 tháng 3 2020

a) ĐKXĐ: \(x\ne3;x\ne\pm2\)

\(C=\frac{2a-a^2}{a+3}\cdot\left(\frac{a-2}{a+2}-\frac{a+2}{a-2}+\frac{4a^2}{4-a^2}\right)\)

\(C=\frac{-a^2+2a}{a+3}\cdot\left(-\frac{4a}{a-2}\right)\)

\(C=-\frac{2a-a^2}{a+3}\cdot\frac{4a}{a-2}\)

\(C=-\frac{\left(2a-a^2\right)\cdot4a}{\left(a+3\right)\left(a-2\right)}\)

\(C=\frac{4a^2}{a+3}\)

b) \(C=\frac{4.4^2}{4+3}=\frac{46}{7}\)

c) \(\frac{4a^2}{a+3}=1\)

<=> 4a2 = a + 3

<=> 4a2 - a - 3 = 0

<=> 4a- 3a - 4a - 3 = 0

<=> a(4a + 3) - (4a + 3) = 0

<=> (4a + 3)(a - 1) = 0

<=> 4a + 3 = 0 hoặc a - 1 = 0

<=> a = -3/4 hoặc a = 1

7 tháng 3 2020

sửa đáp án câu b thành \(\frac{64}{7}\) nhé