\(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2x+3=t\left(t\ge0\right)\)
\(pt\Leftrightarrow\frac{1}{t-1}+\frac{1}{t}=\frac{9}{2\left(t+1\right)}\)
\(\Leftrightarrow\frac{2t\left(t+1\right)}{2t\left(t^2-1\right)}+\frac{2\left(t^2-1\right)}{2t\left(t^2-1\right)}-\frac{9t\left(t-1\right)}{2t\left(t^2-1\right)}=0\)
\(\Leftrightarrow-5t^2+11t-2=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2\end{cases}}\)
\(=\left(\frac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}-\frac{\sqrt{x}}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{2\sqrt{xy}}\)
\(=\left(\frac{y-x}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{2\sqrt{xy}}\)
\(=\frac{\left(y-x\right)\left(\sqrt{x}-\sqrt{y}\right)}{2xy}\)
\(\left(\frac{\sqrt{y}}{x+\sqrt{xy}}-\frac{\sqrt{y}}{x-\sqrt{xy}}\right).\frac{x-y}{2\sqrt{xy}}\)
\(=\frac{x-y}{2\sqrt{xy}}.\left[-\frac{2y\sqrt{x}}{\left(x+\sqrt{yx}\right)\left(x-\sqrt{yx}\right)}\right]\)
\(=-\frac{2y\sqrt{x}}{\left(x+\sqrt{xy}\right)\left(x-\sqrt{xy}\right)}.\frac{x-y}{2\sqrt{xy}}\)
\(=-\frac{2y\sqrt{x}.\left(x-y\right)}{\left(x+\sqrt{xy}\right)\left(x-\sqrt{xy}\right).2\sqrt{xy}}\)
\(=-\frac{y\sqrt{x}\left(x-y\right)}{\left(x+\sqrt{xy}\right)\left(x-\sqrt{xy}\right).\sqrt{xy}}\)
\(=-\frac{\sqrt{y}\left(x-y\right)}{\left(x+\sqrt{yx}\right)\left(x-\sqrt{yx}\right)}\)
\(=-\frac{\sqrt{y}}{x}\)
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\)\(x^2+y^2+z^2=4\)
\(P=\frac{x^3}{x+3y}+\frac{y^3}{y+3z}+\frac{z^3}{z+3x}=\frac{x^4}{x^2+3xy}+\frac{y^4}{y^2+3yz}+\frac{z^4}{z^2+3zx}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}=\frac{4^2}{4+3.4}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{\sqrt{3}}\)
\(2x^3-3x^2+2x-3\)
\(=x^2\left(2x-3\right)+\left(2x-3\right)\)
\(=\left(x^2+1\right)\left(2x-3\right)\)
\(x^2-2xy+y^2-16\)
\(=\left(x-y\right)^2-4^2\)
\(=\left(x-y-4\right)\left(x-y+4\right)\)
\(2x^3-3x^2+2x-3\)
\(=\left(2x^3+2x\right)-\left(3x^2+3\right)\)
\(=2x\left(x^2+1\right)-3\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(2x-3\right)\)
\(3\times y^2-12\times y+12\times\)
\(=3\times\cdot\left(y^2-4y+4\right)\)
\(=3\times\cdot\left(y^2-2\cdot2y+2^2\right)\)
\(=3\times\cdot\left(y-2\right)^2\)
\(3xy^2-12xy+12x\)
\(=3x\left(y^2-4y+4\right)\)
\(=3x\left(y-2\right)^2\)