Cho đường tròn tâm O , đường kính AB , dây CD vg góc OA tại trung điểm OA . Vẽ dây CE // AB. Vẽ OH vg góc BC tại H
a) Tứ giác ACOD là hình gì
b) CM : AC= BE
c) 4 điểm D,O,H,E thẳng hàng
d) Tam giác BCD là tam giác gì
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình cũng nghĩ là đề sai,... do cái này là tài liệu trên mạng.
Đặt \(A=x^2-4x+3\)
\(=x^2-2.x.2+4-1\)
\(=\left(x-2\right)^2-1\)
Vì \(\left(x-2\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-2\right)^2-1\ge-1;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\)
Vậy MIN A=-1 \(\Leftrightarrow x=2\)
= \(x^2-4x+4-1\)
= \(\left(x-2\right)^2-1\ge-1\)
GTNN của biểu thức là -1 khi x=2
Đề bài là tìm MaxB
Ta có \(a^2+b^2\ge2ab;b^2+1\ge2b\)
=> \(\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}\)
=> \(B\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)=\frac{1}{2}\)
Do \(abc=1\)=> \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}=1\)
MaxB=1/2 khi x=y=z=1
a)\(\sqrt{36a^4}+8a=\sqrt{\left(6a^2\right)^2}+8a=6a^2+8a.\)(Vì \(6a^2\ge0\))
b) \(\sqrt{\left(x-3\right)^4}-x^2+3x-1=\sqrt{\left[\left(x-3\right)^2\right]^2}-x^2+3x-1\)
\(=\left(x-3\right)^2-x^2+3x-1\)( Vì \(\left(x-3\right)^2\ge0\))
\(=x^2-6x+9-x^2+3x-1\)
\(=-3x+8\)
BĐT \(\Leftrightarrow6\left(a^3+b^3+c^3\right)+\left(a+b+c\right)^3\ge5\left(a^2+b^2+c^2\right)\left(a+b+c\right)\) (do a + b + c = 1)
\(\Leftrightarrow2\left[a^3+b^3+c^3+3abc-\left(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right)\right]\ge0\)
Luôn đúng theo bđt Schur bậc 3 nên ta có đpcm.
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left\{\left(\frac{1}{3};\frac{1}{3};\frac{1}{3}\right);\left(\frac{1}{2};\frac{1}{2};0\right);\left(\frac{1}{2};0;\frac{1}{2}\right);\left(0;\frac{1}{2};\frac{1}{2}\right)\right\}\)
Cách này mà sai thì em chịu luôn!
ta có
- ( /a/+/b/)^2=/a/^2+2/a/ /b/+/b/^2=a^2+2/ab/+b^2
- /a+b/^2=a^2+2ab+b^2
do 2/ab/>= 2ab (dấu = xảy ra khi ab>=0)
=>a^+b^2+2/ab/>2=a^2+b^2+2ab=> đpcm
BĐT cần C/m
\(\Leftrightarrow\left(|a|+|b|\right)^2\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+2|ab|+b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow|ab|\ge ab\)\(\RightarrowĐPCm\)