bài 2 Hình thang cân ABCD (AB//CD) có đường chéo DB vuông góc với cạnh BC. biết đường chéo BD cũng là tia phân giác của góc ADC.
a) tính các góc của hình thang ABCD
giải hộ tôi đâng cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{#3107}\)
1.
Ta có: \(\text{AB // CD}\)
\(\Rightarrow\widehat{\text{BAC}}=\widehat{\text{ACD}}\left(\text{2 góc sole trong}\right)\) `(1)`
Xét `\Delta ABC:`
\(\text{AB = BC (gt)}\)
\(\Rightarrow\) `\Delta ABC` cân tại B
\(\Rightarrow\widehat{\text{BAC}}=\widehat{\text{BCA}}\) `(2)`
Từ `(1)` và `(2)`
\(\Rightarrow\widehat{\text{ACB}}=\widehat{\text{ACD}}\)
Mà \(\widehat{\text{ACB}}+\widehat{\text{ACD}}=\widehat{\text{BCD}}\)
\(\Rightarrow\) CA là phân giác của \(\widehat{\text{BCD}}.\)
Câu này cô làm rồi em nhá, em xem phần câu hỏi của tôi ý
Q = \(\dfrac{1+x^4+x^8+...+x^{2020}}{1+x^2+...+x^{2022}}\)
Đặt A = 1 + \(x^4\) + \(x^8\) +...+ \(x^{2020}\)
Đặt B = 1 + \(x^2\) + ...+ \(x^{2022}\)
Thì Q = \(\dfrac{A}{B}\)
A = 1 + \(x^4\) + \(x^8\) + ...+ \(x^{2020}\)
A.\(x^4\) = \(x^4\) + \(x^8\) +....+ \(x^{2020}\) + \(x^{2024}\)
A.\(x^4\) - A = \(x^{2024}\) - 1
A = \(\dfrac{x^{2024}-1}{x^4-1}\)
B = 1 + \(x^2\) + \(x^4\) +...+ \(x^{2020}\) + \(x^{2022}\)
B.\(x^2\) = \(x^2\) + \(x^4\) +...+ \(x^{2020}\) + \(x^{2022}\) + \(x^{2024}\)
B\(x^2\) - B = \(x^{2024}\) - 1
B = \(\dfrac{x^{2024}-1}{x^2-1}\)
Q = \(\dfrac{\dfrac{x^{2024}-1}{x^4-1}}{\dfrac{x^{2024}-1}{x^2-1}}\)
Q = \(\dfrac{x^{2024}-1}{x^4-1}\) \(\times\)\(\dfrac{x^2-1}{x^{2024}-1}\)
Q = \(\dfrac{1}{x^2+1}\)
\(\text{#3107}\)
a)
Vì BD là tia phân giác của \(\widehat{\text{ADC}}\)
\(\Rightarrow\widehat{\text{ADB}}=\widehat{\text{CDB}}=\dfrac{1}{2}\widehat{\text{ADC}}\)
Mà ABCD là hình thang cân
\(\Rightarrow\widehat{\text{C}}=\widehat{\text{D}}\)
\(\Rightarrow\widehat{\text{C}}=2\widehat{\text{BDC}}\)
Xét `\Delta BDC:`
\(\widehat{\text{BDC}}+\widehat{\text{CBD}}+\widehat{\text{C}}=180^0\\ \Rightarrow\widehat{\text{BDC}}+90^0+2\widehat{\text{BDC}}=180^0\\ \Rightarrow3\widehat{\text{BDC}}=90^0\\ \Rightarrow\widehat{\text{BDC}}=30^0\)
Vì \(\widehat{\text{C}}=2\widehat{\text{BDC}}\)
\(\Rightarrow\widehat{\text{C}}=2\cdot30^0\\ \Rightarrow\widehat{\text{C}}=60^0\)
Vì $\widehat{C} = \widehat{D}$
\(\Rightarrow\widehat{\text{C}}=\widehat{\text{D}}=60^0\)
Vì ABCD là hình thang cân
\(\Rightarrow\widehat{\text{A}}+\widehat{\text{D}}=180^0\left(\text{2 góc trong cùng phía bù nhau}\right)\\ \Rightarrow\widehat{\text{A}}+60^0=180^0\\ \Rightarrow\widehat{\text{A}}=120^0\)
Vì \(\widehat{\text{A}}=\widehat{\text{B}}\left(\text{ABCD là hình thang cân}\right)\)
\(\Rightarrow\widehat{\text{A}}=\widehat{\text{B}}=120^0\)
Vậy, số đo các góc trong hình thang cân ABCD là: \(\widehat{\text{A}}=\widehat{\text{B}}=120^0;\widehat{\text{C}}=\widehat{\text{D}}=60^0.\)