cho 1212(o) đường kính AB, vẽ tiếp Ax, By. trên nửa đường tròn lấy C bất kì, qua C vẽ tiếp tuyến d của đường tròn, d cắt Ax tai E, By tại F (vẽ cả hình cho mình nha)
a, CM: 4điểm A, E, C, O ϵ 1 đường tròn
b, CM: EF = AE + BF
c, CM: góc EOF = 90o
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{a^2+2b^2}=\sqrt{a^2+b^2+b^2}\ge\sqrt{\frac{\left(a+2b\right)^2}{3}}=\frac{1}{\sqrt{3}}\left(a+2b\right)\)
Tương tự: \(\sqrt{b^2+2c^2}\ge\frac{1}{\sqrt{3}}\left(b+2c\right);\sqrt{c^2+2a^2}\ge\frac{1}{\sqrt{3}}\left(c+2a\right)\)
Cộng các bđt lại ta đc: \(\sqrt{a^2+2b^2}+\sqrt{b^2+2c^2}+\sqrt{c^2+2a^2}\ge\frac{1}{\sqrt{3}}\left(3a+3b+3c\right)=\sqrt{3}\left(a+b+c\right)\)
Dấu "=" xảy ra khi a=b=c
Do \(2x^2+2>0;\sqrt{x^2-2x+3}>0\)
=> \(x+1>0\)
Áp dụng cosi cho vế trái ta có:
\(\left(x+1\right)\sqrt{x^2-2x+3}\le\frac{1}{2}\left(x^2+2x+1+x^2-2x+3\right)=x^2+2\le2x^2+2=VP\)
Dấu bằng xảy ra khi \(\hept{\begin{cases}x+1=\sqrt{x^2-2x+3}\\x=0\end{cases}}\)(vô nghiệm)
=> PT vô nghiệm
Vậy PT vô nghiệm