tìm m để hai đường thẳng
y=(3m + 2)x +m-1
y=(3-m)x-m+2
a) cắt nhau
b)song song với nhau
c)vuông góc với nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\frac{2x+2\sqrt{x}+2}{-\sqrt{x}}+\sqrt{x}\)
\(Q=-2\sqrt{x}-2-\frac{2}{\sqrt{x}}+\sqrt{x}\)
\(Q=-\sqrt{x}-\frac{2}{\sqrt{x}}-2\)
\(\sqrt{x}+\frac{2}{\sqrt{x}}\ge2\sqrt{2}\Rightarrow-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)\le-2\sqrt{2}\)
\(\Rightarrow Q\le-2\sqrt{2}-2\)
\("="\Leftrightarrow x=\sqrt{2}\)
\(\sqrt{5x+3}=\sqrt{3-\sqrt{2}}\)
\(\Leftrightarrow\sqrt{5x+3}^2=\sqrt{3-\sqrt{2}}^2\)
\(\Leftrightarrow5x+3=3-\sqrt{2}\)
\(\Leftrightarrow5x=-\sqrt{2}\)
\(\Leftrightarrow x=\frac{-\sqrt{2}}{5}\)
\(\sqrt{4\left(1-x\right)^2}-\sqrt{3}=0\)
\(\Leftrightarrow\sqrt{\left(2-2x\right)^2}-\sqrt{3}=0\)
\(\Leftrightarrow\sqrt{\left(2-2x\right)^2}=\sqrt{3}\)
\(\Leftrightarrow\left|2-3x\right|=\sqrt{3}\)
\(\Leftrightarrow\orbr{\begin{cases}2-3x=\sqrt{3}\\2-3x=-\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2-\sqrt{3}}{3}\\x=\frac{2+\sqrt{3}}{3}\end{cases}}\)
ĐK \(y^2\ge9\)
\(PT\Leftrightarrow\sqrt{y^2-9}=6-2y\)
Bình phương 2 vế ta được
\(y^2-9=36-24y+4y^2\)
\(\Leftrightarrow3y^2-24y+45=0\)
\(\Leftrightarrow y^2-8y+15=0\)
\(\Leftrightarrow\left(y-3\right)\left(y-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-3=0\\y-5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=3\\y=5\end{cases}}\)
Vậy..................
\(\Leftrightarrow2\left(x-3\right)+\sqrt{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(2\sqrt{x-3}-\sqrt{x+3}\right)=0\)
\(\Rightarrow\sqrt{x-3}\left(2\sqrt{x-3}-\sqrt{8}-\sqrt{x+3}+\sqrt{8}\right)=0\)
\(\Leftrightarrow\sqrt{x-3}\cdot\sqrt{x-5}\left(\frac{1}{2\sqrt{x-3}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{x+3}}\right)=0\)
\(\Rightarrow\left(\frac{1}{2\sqrt{x-3}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{x+3}}\right)>0\left(\forall x\right)\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)
\(\Leftrightarrow\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\sqrt{x-3}\left(2\sqrt{x-3}-\sqrt{8}+\sqrt{x+3}+\sqrt{8}\right)=0\)
\(\Leftrightarrow\sqrt{x-3}\cdot\sqrt{x-5}\cdot\left(\frac{1}{2\sqrt{x-3}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{x+3}}\right)=0\)
\(\left(\frac{1}{2\sqrt{x-3}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{x+3}}\right)>0\left(\forall x\right)\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)
\(\Leftrightarrow\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\sqrt{x-3}\left(2\sqrt{x-3}-\sqrt{8}+\sqrt{x+3}+\sqrt{8}\right)=0\)
\(\Leftrightarrow\sqrt{x-3}\cdot\sqrt{x-5}\cdot\left(\frac{1}{2\sqrt{x-3}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{x+3}}\right)=0\)
\(\left(\frac{1}{2\sqrt{x-3}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{x+3}}\right)>0\left(\forall x\right)\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)
a) Hai đường thẳng y=(3m + 2)x +m-1 và y=(3-m)x-m+2 cắt nhau \(\Leftrightarrow3m+2\ne3-m\)
\(\Leftrightarrow4m\ne1\Leftrightarrow m\ne\frac{1}{4}\)
b) Hai đường thẳng y=(3m + 2)x +m-1 và y=(3-m)x-m+2 song song với nhau \(\Leftrightarrow3m+2=3-m\)
\(\Leftrightarrow4m=1\Leftrightarrow m=\frac{1}{4}\)
P/s: E ms lớp 6, sai thông cảm