ai giải giúp e cho 1 đêm tới sáng :căn bậc hai(x-1)+căn bậc hai(x+3)+2 *căn bậc hai((x-1)*(x+3)) = 4 -2*x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(xy\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)
<=>\(x\left(x^2y^3-2x^2y-y+4y^2+2\right)=1\)
=> \(x^2y^3-2x^2y-y+4y^2+2=\frac{1}{x}\)
Do VT là số nguyên với x,y nguyên
=> \(\frac{1}{x}\)nguyên => \(x=\pm1\)
+ \(x=1\)=> \(y^3-3y+4y^2+1=0\)( không có nghiệm nguyên)
+ x=-1
=> \(y^3-3y+4y^2+3=0\)( không có nghiệm nguyên )
=> PT vô nghiệm
Vậy PT vô nghiệm
a) Xét 2 tam giác vuông AMB và ANC có: \(\widehat{MAB}=\widehat{NAC}\) ( do AD là tia phân giác ^A )
\(\Rightarrow\)\(\Delta AMB~\Delta ANC\) ( g-g ) \(\Rightarrow\)\(\frac{BM}{AB}=\frac{CN}{AC}\)
b) Theo bđt 3 điểm ta có: \(\hept{\begin{cases}BM+DM\le BD\\CN+DN\le CD\end{cases}}\)\(\Rightarrow\)\(BM+CN+DM+DN\le BC\)
\(\Rightarrow\)\(BM+CN\le BC\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}M\in BD,AD\\N\in CD,AD\end{cases}}\)\(\Rightarrow\)\(M\equiv N\equiv D\)\(\Rightarrow\)\(BD\perp AD;CD\perp AD\) hay tam giác ABC có AD vừa là đường phân giác vừa là đường cao => tam giác ABC cân tại A
c) Có: \(\sin\left(\frac{A}{2}\right)=\frac{BM}{AB}=\frac{CN}{AC}=\frac{BM+CN}{AB+AC}\le\frac{BC}{AB+AC}\le\frac{BC}{2\sqrt{AB.AC}}\)
Dấu "=" xảy ra khi tam giác ABC cân tại A
=\(\sqrt[3]{64.2}+\sqrt[3]{-125.2}-7\sqrt[3]{8.2}\)
= \(4\sqrt[3]{2}-5\sqrt[3]{2}-14\sqrt[3]{2}=-15\sqrt[3]{2}\)