\(\text{Tìm }x\in R\text{ thỏa mãn :}\)
\(\hept{\begin{cases}x+\sqrt{3}\in Z\\\frac{1}{x}-\sqrt{3}\in Z\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O K I H
Tam giác ABC có ˆA>ˆB>ˆCA^>B^>C^ nên suy ra:
BC > AC > AB (cạnh đối diện góc lớn hơn thì lớn hơn)
Ta có AB, BC, AC lần lượt là các dây cung của đường tròn (O)
Mà BC < AC > AB nên suy ra:
OH < OI < OK ( dây lớn hơn gần tâm hơn).
Chúc bạn học tốt !!!
\(\sqrt{x^2+4}-2\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{x^2+4}=2\sqrt{x+2}\)
\(\Leftrightarrow\sqrt{x^2+4}=\sqrt{4x+8}\)
\(\Leftrightarrow\sqrt{x^2+4}^2=\sqrt{4x+8}^2\)
\(\Leftrightarrow x^2+4=4x+8\)
\(\Leftrightarrow x^2-4x-4=0\)
\(\Delta=\left(-4\right)^2-4.1.\left(-4\right)=16+16=32\)
Vậy \(x_1=\frac{4+\sqrt{32}}{2}\);\(x_2=\frac{4-\sqrt{32}}{2}\)
P/S: Ko chắc
\(\sqrt{x^2+4}-2\sqrt{x+2}=0.\)
\(\Rightarrow\sqrt{x^2+4}=2\sqrt{x+2}\)
\(\Rightarrow x^2+4=2x+4\)
\(\Rightarrow x^2+4-2x-4=0.\)
\(\Rightarrow x^2-2x=0\)
\(\Rightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
Vậy .............
Study well
Đặt \(x+\sqrt{3}=a;\frac{1}{x}-\sqrt{3}=b\left(a,b\in Z\right)\)
=> \(a-\sqrt{3}=\frac{1}{b+\sqrt{3}}=x\)
=> \(ab-3=\sqrt{3}\left(b-a\right)\)
Do \(a,b\in Z\)
=> \(\sqrt{3}\left(b-a\right)\in Z\)
=> \(a=b\)
=> \(ab=3\)=> \(a=b=\sqrt{3}\)(Loại)
Vậy không có giá trị nào của x t/m đề bài
Câu trả lời trên sai rồi, câu trả lời đúng đây:
Đặt \(\hept{\begin{cases}x+\sqrt{3}=a\\\frac{1}{x}-\sqrt{3}=b\end{cases}}\left(a,b\inℤ\right)\Rightarrow\hept{\begin{cases}x=a-\sqrt{3}\\\frac{1}{x}=b+\sqrt{3}\end{cases}\Rightarrow\hept{\begin{cases}x=a-\sqrt{3}\\x=\frac{1}{b+\sqrt{3}}\end{cases}\Rightarrow}a-\sqrt{3}=\frac{1}{b+\sqrt{3}}}\)
\(\Rightarrow\left(a-\sqrt{3}\right)\left(b+\sqrt{3}\right)=1\Rightarrow4-ab=\sqrt{3}\left(a-b\right)\)
TH1: \(a-b\ne0\Rightarrow\sqrt{3}\left(a-b\right)\notinℤ\)
mà\(4-ab\inℤ\)
suy ra mâu thuẫn
TH2:\(a-b=0\Rightarrow a=b\Rightarrow4-a^2=4-b^2=0\Rightarrow a=b=2\)
Khi đó \(x=2-\sqrt{3}\)
Vậy........................................