K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2019

a7 - a = a(a6 - 1) = a(a2 - 1)(a2 + a + 1)(a2 - a + 1)


Nếu a = 7k (k thuộc Z) thì a chia hết cho 7


Nếu a = 7k + 1 (k thuộc Z) thì a2 - 1 = 49k2 + 14k chia hết cho 7


Nếu a = 7k + 2 (k thuộc Z) thì a2 + a + 1 = 49k2 + 35k + 7 chia hết cho 7


Nếu a = 7k + 3 (k thuộc Z) thì a2 - a + 1 = 49k2 + 35k + 7 chia hết cho 7


Trong trường hợp nào củng có một thừa số chia hết cho 7

Vậy: a7 - a chia hết cho 7

22 tháng 8 2019

Trước tiên ta phân tích \(a^7-a\)thành nhân tử

\(=\left(a^7+a^6+a^5\right)-\left(a^6+a^5+a^4\right)+\left(a^4+a^3+a^2\right)-\left(a^3+a^2+a\right)\)

\(=a^5\left(a^2+a+1\right)-a^4\left(a^2+a+1\right)+a^2\left(a^2+a+1\right)-a\left(a^2+a+1\right)\)

\(=\left(a^5-a^4+a^2-a\right)\left(a^2+a+1\right)\)

\(=a\left(a^4-a^3+a-1\right)\left(a^2+a+1\right)=a\left(a^4+a-\left(a^3+1\right)\right)\left(a^2+a+1\right)\)

\(=a\left\{a\left(a^3+1\right)-\left(a^3+1\right)\right\}\left(a^2+a+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)

Với a là số chẵn thì a có dạng 2n

Khi đó \(a^2+a+1=4n^2+2n+1=2n\left(2n+1\right)+1⋮7\)....(Bí khúc này mình vẫn chưa nghỉ ra cách chứng minh )

22 tháng 8 2019

\(DK:x\ge\frac{5}{2}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)

\(\Leftrightarrow\sqrt{2x-5}+3+\sqrt{2x-5}+1=4\)

\(\Leftrightarrow2\sqrt{2x-5}=0\)

\(\Leftrightarrow x=\frac{5}{2}\left(n\right)\)

Vay PT co nghiem la \(x=\frac{5}{2}\)

22 tháng 8 2019

Bạn tự vẽ hình nhé ^_^

 Xét \(\Delta ABC\)vuông tại A có:

\(BC^2=AB^2+AC^2\)

Xét \(\Delta ABH\) vuông tại H :

\(AB^2=BH^2+AH^2\)

Xét \(\Delta AHC\) vuông tại H:

\(AC^2=AH^2+HC^2\)

\(\Rightarrow AB^2+AC^2=2AH^2+BH^2+CH^2\)

\(\Rightarrow BC^2=2AH^2+BH^2+CH^2\left(đpcm\right)\)

22 tháng 8 2019

\(3.\frac{x}{x^2+1}=1\)

\(\Leftrightarrow\frac{x}{x^2+1}=\frac{1}{3}\)

\(\Leftrightarrow x^2+1=3x\)

\(\Leftrightarrow x^2-3x+1=0\)

\(\cdot\Delta=\left(-3\right)^2-4.1.1=5\)

\(\cdot\Delta>0\)nên pt có 2 nghiệm phân biệt

\(x_1=\frac{3+\sqrt{5}}{2}\);\(x_2=\frac{3-\sqrt{5}}{2}\)

22 tháng 8 2019

\(\Delta\)là gì ạ?

22 tháng 8 2019

\(Q=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

b.\(Q< 1\)

\(\Leftrightarrow x-\sqrt{x}-2< x-5\sqrt{x}+6\)

\(\Leftrightarrow4\sqrt{x}-8< 0\)

\(\Leftrightarrow0\le x< 4\)

Vay de Q<1 thi \(0\le0< 4\)

22 tháng 8 2019

\(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}=x\left(1-\frac{y^2}{1+y^2}\right)+y\left(1-\frac{z^2}{1+z^2}\right)+z\left(1-\frac{x^2}{1+x^2}\right)\)

\(\Rightarrow A\ge x\left(1-\frac{y}{2}\right)+y\left(1-\frac{z}{2}\right)+z\left(1-\frac{x}{2}\right)=\left(x+y+z\right)-\frac{xy+yz+zx}{2}\ge3-\frac{\frac{9}{3}}{2}=\frac{3}{2}\)

Dau '=' xay ra khi \(x=y=z=1\)

Vay \(A_{min}=\frac{3}{2}\)khi \(x=y=z=1\)

22 tháng 8 2019

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\)\(a+b+c\ge3\left(\frac{ab+bc+ca}{a+b+c}\right)\)

\(\Leftrightarrow\)\(a+b+c\ge3\left(\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}\right)\)

\(\Leftrightarrow\)\(a+b+c\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)