K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2024

a, \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-\dfrac{9}{25}=\dfrac{16}{25}\Leftrightarrow cosx=\dfrac{4}{5}\)

\(tanx=\dfrac{sinx}{cosx}=-\dfrac{3}{5}:\left(\dfrac{4}{5}\right)=-\dfrac{3}{4}\)

\(cotx=-\dfrac{4}{3}\)

c, \(sin^2x+cos^2x=1\Leftrightarrow sin^2x=1-\dfrac{9}{25}=\dfrac{16}{25}\Leftrightarrow sinx=\dfrac{4}{5}\)

\(tanx=\dfrac{sinx}{cosx}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)

\(cotx=\dfrac{3}{4}\)

b, \(cos^2x+sin^2x=1\Leftrightarrow sin^2x=1-\dfrac{1}{16}=\dfrac{15}{16}\Leftrightarrow sinx=\dfrac{\sqrt{15}}{4}\)

\(tanx=\dfrac{\sqrt{15}}{4}:\dfrac{1}{4}=\sqrt{15}\)

\(cotx=\dfrac{1}{\sqrt{15}}\)

d, \(sin^2x+cos^2x=1\Leftrightarrow sin^2x=1-\dfrac{25}{169}=\dfrac{144}{169}\Leftrightarrow sinx=\dfrac{12}{13}\)

\(tanx=\dfrac{12}{13}:\left(-\dfrac{5}{13}\right)=-\dfrac{12}{5}\)

\(cotx=-\dfrac{5}{12}\)

a: \(\Omega< x< \dfrac{3}{2}\Omega\)

=>cosx<0

Ta có: \(sin^2x+cos^2x=1\)

=>\(cos^2x=1-sin^2x=1-\left(\dfrac{3}{5}\right)^2=\dfrac{16}{25}\)

mà cosx<0

nên \(cosx=-\dfrac{4}{5}\)

\(tanx=\dfrac{sinx}{cosx}=\dfrac{-3}{5}:\dfrac{-4}{5}=\dfrac{3}{4}\)

\(cotx=\dfrac{1}{tanx}=\dfrac{4}{3}\)

b: \(0< x< \dfrac{\Omega}{2}\)

=>sin x>0

\(sin^2x+cos^2x=1\)

=>\(sin^2x=1-\left(\dfrac{1}{4}\right)^2=\dfrac{15}{16}\)

mà sin x>0

nên \(sinx=\dfrac{\sqrt{15}}{4}\)

\(tanx=\dfrac{sinx}{cosx}=\dfrac{\sqrt{15}}{4}:\dfrac{1}{4}=\sqrt{15}\)

\(cotx=\dfrac{1}{tanx}=\dfrac{1}{\sqrt{15}}=\dfrac{\sqrt{15}}{15}\)

c: 0<x<90 độ

=>sin x>0

\(sin^2x+cos^2x=1\)

=>\(sin^2x=1-\left(\dfrac{3}{5}\right)^2=\dfrac{16}{25}=\left(\dfrac{4}{5}\right)^2\)

mà sin x>0

nên \(sinx=\dfrac{4}{5}\)

\(tanx=\dfrac{sinx}{cosx}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)

\(cotx=1:\dfrac{4}{3}=\dfrac{3}{4}\)

d: \(180^0< x< 270^0\)

=>sin x<0

\(sin^2x+cos^2x=1\)

=>\(sin^2x=1-\left(-\dfrac{5}{13}\right)^2=1-\dfrac{25}{169}=\dfrac{144}{169}\)

mà sin x<0

nên \(sinx=-\dfrac{12}{13}\)

\(tanx=\dfrac{sinx}{cosx}=\dfrac{-12}{13}:\dfrac{-5}{13}=\dfrac{12}{5}\)

\(cotx=\dfrac{1}{tanx}=\dfrac{5}{12}\)

20 tháng 5 2024

Có \(AC=AD\sqrt{2}=a\sqrt{2}\)

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp AC\) \(\Rightarrow\Delta SAC\) vuông tại A.

\(\Rightarrow SA=\sqrt{SC^2-AC^2}=\sqrt{\left(a\sqrt{3}\right)^2-\left(a\sqrt{2}\right)^2}=a\)

\(\Rightarrow V_{S.ABCD}=\dfrac{1}{3}.S_{ABCD}.SA=\dfrac{1}{3}.AD^2.SA=\dfrac{1}{3}.a^2.a=\dfrac{a^3}{3}\)

4
456
CTVHS
17 tháng 5 2024

17 tháng 5 2024

có nha bạn

13 tháng 5 2024

A

AH
Akai Haruma
Giáo viên
12 tháng 5 2024

Lời giải:
Gọi cạnh hình lập phương là $a$.

Vì $AD\parallel A'D'$ nên:

$\angle (A'D', C'D)=\angle (AD, C'D)=\widehat{ADC'}$

Ta thấy:

$AD=a$

$DC'=\sqrt{DD'^2+D'C'^2}=\sqrt{a^2+a^2}=\sqrt{2}a$

$AC'=\sqrt{AA'^2+A'C'^2}=\sqrt{a^2+2a^2}=\sqrt{3}a$

$\Rightarrow AD^2+DC'^2=AC'^2$

$\Rightarrow ADC'$ là tam giác vuông tại $D$ (theo định lý Pitago đảo)

$\Rightarrow \angle (A'D', C'D)=\widehat{ADC'}=90^0$

Gọi số năm để người đó nhận được tổng số tiền nhiều 300 triệu là x(năm)

(Điều kiện: x>0)

Sau x năm, số tiền người đó nhận được sẽ là:

\(100\cdot10^6\left(1+0,06\right)^x\left(đồng\right)\)

Theo đề, ta có: \(100\cdot10^6\left(1+0,06\right)^x=300\cdot10^6\)

=>\(\left(1+0,06\right)^x=3\)

=>\(x\simeq19\)

vậy: Sau 19 năm thì tổng số tiền người đó nhận được sẽ nhiều hơn 300 triệu

11 tháng 5 2024

Số tiền lãi của người đó là:

100000000÷ 100× 6= 6000000(tiền)

Số tiền gốc và lãi sau số năm thì hơn 300 triệu là:

300000000-100000000+6000000=33,5(năm)

\(f'\left(x\right)=\left(\dfrac{x^2+3x-5}{x+2}\right)'\)

\(=\dfrac{\left(x^2+3x-5\right)'\left(x+2\right)-\left(x^2+3x-5\right)\left(x+2\right)'}{\left(x+2\right)^2}\)

\(=\dfrac{\left(2x+3\right)\left(x+2\right)-\left(x^2+3x-5\right)}{\left(x+2\right)^2}\)

\(=\dfrac{2x^2+7x+6-x^2-3x+5}{\left(x+2\right)^2}=\dfrac{x^2+4x+11}{\left(x+2\right)^2}\)

\(f'\left(1\right)=\dfrac{1^2+4\cdot1+11}{\left(1+2\right)^2}=\dfrac{16}{9}\)

\(s\left(t\right)=t^2-4t+3\)

=>\(v\left(t\right)=s'\left(t\right)=2t-4\)

=>\(a\left(t\right)=v'\left(t\right)=2\cdot1=2\)

=>a(4)=2

\(f\left(x\right)=-x^2+1\)

=>\(f'\left(x\right)=-2x\)

\(f\left(-2\right)=-\left(-2\right)^2+1=-4+1=-3\)

\(f'\left(-2\right)=-2\cdot\left(-2\right)=4\)

Phương trình tiếp tuyến của (P) tại x=-2 là:

y-f(-2)=f'(-2)(x+2)

=>y-(-3)=4(x+2)=4x+8

=>y=4x+8-3=4x+5