K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2019

\(VP^2\le2\left(a+b+c\right)\left(a^2+b^2+c^2\right)\) (1) 

\(VT^2=\left(\frac{a^4}{a}+\frac{b^4}{b}+\frac{c^4}{c}\right)^2\ge\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)^3}{\left(a+b+c\right)^2}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^6}{27\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)\left(a+b+c\right)^3}{27}\)

\(\ge\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)\left(3\sqrt[3]{abc}\right)^3}{27}=2\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge VP^2\) (2) 

Mà VT và VP đều dường nên từ (1) và (2) suy ra đpcm 

Dấu "=" xảy ra khi \(a=b=c=\sqrt[3]{2}\)

8 tháng 9 2021

Bạn viết đề sai rồi

Cái \(3\dfrac{14}{17}\) là hỗn số chứ ko phải là số tự nhiên nhân vs phân số

 

28 tháng 8 2019

#)Giải :

(Hình bn tự vẽ)

AD là phân giác của ∆ABC \(\Rightarrow\) \(\frac{BD}{AB}=\frac{DC}{AC}\Rightarrow\frac{BD^2}{AB^2}=\frac{DC^2}{AC^2}\)

Ta có : \(BC=BD+CD=3.\frac{14}{17}+9.\frac{3}{17}=\frac{42}{17}+\frac{27}{17}=\frac{69}{17}\)

Mà ∆ABC vuông tại A nên theo định lí Py - ta - go \(\Rightarrow AB^2+AC^2=BC^2\Rightarrow AB^2+AC^2=\left(\frac{69}{17}\right)^2\)

Theo t/chất dãy tỉ số bằng nhau : \(\frac{BD^2}{AB^2}=\frac{DC^2}{AC^2}=\frac{BD^2+DC^2}{AB^2+AC^2}=\frac{\left(\frac{42}{17}\right)^2+\left(\frac{27}{17}\right)^2}{\left(\frac{69}{17}\right)^2}=\) dài dòng vãi ra @@

Chắc đề sai rồi

28 tháng 8 2019

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

28 tháng 8 2019

ko đăng linh tinh nha bạn

28 tháng 8 2019

Ban lay mot bai cu the di

28 tháng 8 2019

\(\frac{3}{a^2+b^2}+\frac{2}{ab}=\frac{3}{a^2+b^2}+\frac{3}{2ab}+\frac{1}{2ab}\)

\(\ge\frac{12}{\left(a+b\right)^2}+\frac{1}{2ab}\ge12+\frac{2}{\left(a+b\right)^2}\ge12+2=14\)(đpcm)

Vậy..