K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2019

\(a,\sqrt{x}>1\Leftrightarrow\sqrt{x}>\sqrt{1}\Leftrightarrow x>1.\)

\(b,\sqrt{x}< 3\Rightarrow\sqrt{x}< \sqrt{9}\Rightarrow x< 9\)

\(c,\sqrt{x}=14\Rightarrow\sqrt{x}=\sqrt{196}\Leftrightarrow x=196\)

29 tháng 8 2019

help mink với

29 tháng 8 2019

\(P=\frac{4}{a}+4a+\frac{1}{4b}+4b-4\left(a+b\right)\ge2\sqrt{\frac{4}{a}.4a}+2\sqrt{\frac{1}{4b}.4b}-5\)

\(=8+2-5=5\)

Đẳng thức xảy ra khi \(a=1;b=\frac{1}{4}\)

29 tháng 8 2019

Ta có : 

AC vuông BD mà AC // BE 

Suy ra: BE vuông DB

BH=\(\sqrt{BD^2-DH^2}=\sqrt{92,16}=9,6\)

Áp dụng hệ thức lượng trong tam giác vuông DBE ta được

\(BH^2=DH.HE\Leftrightarrow92,16=7,2.HE\Leftrightarrow HE=12.8\)

Vậy DE=HE+DH=20

Diện tích ABCD=1/2BH(AB+DC)=1/2BH(CE+DC)=96

Vậy là xong. Bạn có rảnh thì xem giải tiếp mình vài câu hỏi mik gửi lên giùm.

CẢM ƠN BẠN!

29 tháng 8 2019

Bạn thiếu 1 TH nha !

Thay x=-2015 vào bt ,ta được :

\(\left(x-1\right)^2=2016\left|x-1\right|\)

\(\Rightarrow2016^2=2016\left|x-1\right|\)

\(\Rightarrow\left|x-1\right|=2016\)

\(\Rightarrow TH1:x-1=2016\Rightarrow x=2017\)

\(TH2:x-1=-2016\Rightarrow x=-2015\)

Vậy \(x\in\left\{2017;-2015\right\}\)

29 tháng 8 2019

TL:

\(y=4-x.40\)

29 tháng 8 2019

Cầ gấp, cần gấp. Cao nhân nào đi qua xin chỉ giáo dùm

17 tháng 4 2020

Nếu bạn đã từng tự rủa bản thân vì quá ngu...thì đúng là bạn ngu thật. Chỉ có loại ngu mới đi chửi chính mình. 
-Triết lý anh Sơn-
2c, \(x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge6xyz\\ \)

Á djt mẹ nãy dùng BĐT quá k nhớ ra là còn có cả trường hợp âm không dùng BĐT được...nên xử lí luôn he? :))
Nếu trong 3 số \(x,y,z\)có 1 hoặc 3 số âm, ta có \(6xyz\le0\le x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\) (ĐPCM)

Nếu trong 3 số \(x,y,z\)có 2 số âm hoặc có 3 số dương thì xét như nhau (nói âm dương là vậy chứ thiết nhất là em ghi \("\ge0"\)và \("\le0"\)cho nó chuẩn nhất ;))

Có: \(x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge2x^2y+2y^2z+2z^2x\)(1) (Bất đẳng thức Cô-si)
Ta cần chứng minh: \(2x^2y+2zy^2+2xz^2\ge6xyz\)

\(\Leftrightarrow\)\(\frac{2x^2y}{xyz}+\frac{2zy^2}{xyz}+\frac{2xz^2}{xyz}=2\frac{x}{z}+2\frac{y}{x}+2\frac{z}{y}\ge6\)(2)

Đến đây có thể làm theo 2 cách, nhưng thôi anh làm cách nhanh hơn :))

Áp dụng BĐT Cauchy-Schwarz cho 2 bộ số \(\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\)và \(\left(x,y,z\right)\)trong đó \(x,y,z\ge0\). Khi đó:
\(\frac{\left(\sqrt{x}\right)^2}{z}+\frac{\left(\sqrt{y}\right)^2}{x}+\frac{\left(\sqrt{z}\right)^2}{y}\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\)

Thay vào (2) ta có:\(2\frac{x}{z}+2\frac{y}{x}+2\frac{z}{y}\ge2\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge6\)(3)

Từ (1), (2) và (3) => ĐPCM

Đến đây có lẽ chú sẽ nghĩ: Dựa vào đâu mà cha này bảo \(\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge3\)???
Thì câu trả lời đây: \(\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge3\)\(\Leftrightarrow\)\(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\ge3\left(x+y+z\right)\)

\(\Leftrightarrow\)\(2x+2y+2z-2\sqrt{xy}-2\sqrt{yz}-2\sqrt{zx}=\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

29 tháng 8 2019

\(DK:x\ge0\)

\(\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+1}}{x-x-1}+\frac{\sqrt{x+1}-\sqrt{x+2}}{x+1-x-2}+\frac{\sqrt{x+2}-\sqrt{x+3}}{x+2-x-3}=1\)

\(\Leftrightarrow-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+2}+\sqrt{x+3}=1\)

\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x+3}=1+\sqrt{x}\)

\(\Leftrightarrow x+3=x+2\sqrt{x}+1\)

\(\Leftrightarrow x=1\)

Vay nghiem cua PT la \(x=1\)