Rút gọn
(x căn y + y căn x) (căn x - căn y) / căn xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=\(\frac{\sqrt[3]{\left(1+\sqrt{3}\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}}\)
x=\(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{\sqrt{5}+1-\sqrt{5}}\)
x=3-1=2
Thay vao P=\(\left(2^3-4.2-1\right)^{2010}=\left(8-8-1\right)^{2010}=\left(-1\right)^{2010}=-1\)
Vay P co gia tri nguyen la -1
Chuc ban hoc tot
\(DK:x\ge1\)
\(A=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}+2019\)
\(=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|+2019\)
\(=|\sqrt{x-1}+1|+|1-\sqrt{x-1}|+2019\ge|\sqrt{x-1}+1+1-\sqrt{x-1}|+2019=2021\)
Dau '=' xay ra khi \(\left(\sqrt{x-1}+1\right)\left(1-\sqrt{x-1}\right)\ge0\)
TH1:
\(\hept{\begin{cases}\sqrt{x-1}+1\ge0\\1-\sqrt{x-1}\ge0\end{cases}\Leftrightarrow x=2\left(n\right)}\)
TH2:
\(\hept{\begin{cases}\sqrt{x-1}+1\le0\\1-\sqrt{x-1}\le0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}\le-1\\\sqrt{x-1}\ge1\end{cases}\left(l\right)}}\)
Vay \(A_{min}=2021\)khi \(x=2\)
Câu b
Từ N kể đường thẳng song song với BC cắt đường thẳng AB tại K => KBCN là hình thang (*)
Lại có góc BKN = ABC ( đồng vị), CNK = ACB (đồng vị) và ABC = ACB nên BKN = CNK (**)
từ (*) và (**) => KBCN là hình thang cân => BK = CN = BM.
=> AK = AN nên tam giác AKN cân tại A => AO là đường trung trực của KN => OK = ON (4)
vì OI là trung trực của MN nên OM = ON (5)
từ (4) và (5) => OM = OK => tam giác OMK cân tại O lại có BM = BK (cmt) nên OB v^g góc với AB.
Tam giác ABO và Tam giác ACO có: AB = ÃC, BAO = CAO (gt) , AO chung nên tam giác ABO = tam giác ACO (c,g,c) => ACO = ABO = 90độ. hay OC vuông góc với AC.
\(sin60^o=cos30^o\) \(cos75^o=sin15^o\) \(sin52^o30^'=cos37^o30^'\)
\(cot82^o=tan8^o\) \(tan80^o=cot10^o\) \(cos43^o=sin47^o\)
\(cos46^o52^'=sin43^o8^'\) \(cot71^o=tan19^o\)
tk mk nha
Neu mk lam sai mong các ban thong cam va gop y nha
Cam on cac ban nhieu
Em làm thử thoi
\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)
\(=\frac{\left(x\sqrt{y}+y\sqrt{x}\right).\sqrt{x}-\left(x\sqrt{y}+y\sqrt{x}\right).\sqrt{y}}{\sqrt{xy}}\)
\(=\frac{x\sqrt{xy}+xy-xy-y\sqrt{xy}}{\sqrt{xy}}\)
\(=\frac{x\sqrt{xy}-y\sqrt{xy}}{\sqrt{xy}}\)
\(=\frac{\sqrt{xy}.\left(x-y\right)}{\sqrt{xy}}\)
\(=x-y\)