K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2023

a)

Xét \(\Delta AOD\) và \(\Delta COB\) có: \(\left\{{}\begin{matrix}OA=OC\left(gt\right)\\\widehat{O}:chung\\OB=OD\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\)

\(\Rightarrow AD=BC\left(\text{2 cạnh tương ứng}\right)\left(\text{đpcm}\right)\)

b) 

Nối A với C

Ta có: \(\left\{{}\begin{matrix}OA=OC\\OB=OD\end{matrix}\right.\left(gt\right)\Rightarrow OA-OB=OC-OD\)

Hay \(AB=CD\)

Xét \(\Delta ABC\) và \(\Delta CDA\) có: \(\left\{{}\begin{matrix}AB=CD\left(cmt\right)\\AC:chung\\AD=BC\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABC=\Delta DCA\left(c.c.c\right)\)

\(\Rightarrow\widehat{ABC}=\widehat{CDA}\left(\text{2 góc tương ứng}\right)\)

Vì \(\Delta AOD=\Delta COB\left(cmt\right)\Rightarrow\widehat{A}=\widehat{C}\left(\text{2 góc tương ứng}\right)\)

Xét \(\Delta ABE\) và \(\Delta CDE\) có: \(\left\{{}\begin{matrix}\widehat{ABC}=\widehat{CDA}\left(cmt\right)\\AB=CD\left(cmt\right)\\\widehat{A}=\widehat{C}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABE=\Delta CDE\left(g.c.g\right)\left(\text{đpcm}\right)\)

c) Vì \(\Delta ABE=\Delta CDE\left(cmt\right)\Rightarrow AE=CE\left(\text{2 cạnh tương ứng}\right)\)

Xét \(\Delta AOE\) và \(\Delta COE\) có: \(\left\{{}\begin{matrix}OA=OC\left(gt\right)\\\widehat{A}=\widehat{C}\left(cmt\right)\\AE=CE\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AOE=\Delta COE\left(c.g.c\right)\\ \Rightarrow\widehat{AOE}=\widehat{COE}\left(\text{2 góc tương ứng}\right)\)

`=> OE` là phân giác của \(\widehat{xOy}\) (đpcm)

7 tháng 3 2023

em bổ sung hình nhé

7 tháng 3 2023

Vì Om là phân giác của \(\widehat{xOy}\)

\(\Rightarrow\widehat{IOE}=\widehat{IOF}=\dfrac{1}{2}\widehat{EOF}\)

Vì \(\left\{{}\begin{matrix}IE\perp Ox\\IF\perp Oy\end{matrix}\right.\left(gt\right)\Rightarrow\widehat{IEO}=\widehat{IFO}=90^o\)

Xét \(\Delta IOE\) và \(\Delta IOF\) có: \(\left\{{}\begin{matrix}\widehat{IEO}=\widehat{IFO}\left(=90^o\right)\\OI:chung\\\widehat{IOE}=\widehat{IOF}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta IOE=\Delta IOF\left(\text{cạnh huyền - góc nhọn}\right)\)

b) Vì \(\Delta IOE=\Delta IOF\left(cmt\right)\Rightarrow OE=OF\left(\text{2 cạnh tương ứng}\right)\)

Xét \(\Delta EOF\) có: \(OE=OF\left(cmt\right)\)

\(\Rightarrow\Delta EOF\) cân ở O

\(\Rightarrow\widehat{OEF}=\widehat{OFE}\)

Xét \(\Delta EOF\) có:

\(\widehat{EOF}+\widehat{OFE}+\widehat{OEF}=180^o\)

\(\Rightarrow2\widehat{EOI}+2\widehat{OEF}=180^o\\ \Rightarrow\widehat{EOI}+\widehat{OEF}=90^o\)

Gọi \(EF\cap OI\equiv M\)

Xét \(\Delta OME\) có: 

\(\widehat{OEF}+\widehat{EOI}+\widehat{OME}=180^o\\ \Rightarrow90^o+\widehat{OME}=180^o\\ \Rightarrow\widehat{OME}=180^o-90^o=90^o\\ \Rightarrow EF\perp Om\left(\text{đpcm}\right)\)

18 tháng 4 2023

Cho ���^(0∘<���^<180∘)�� là tia phân giác ���^. Trên tia �� lấy điểm  bất kì. Gọi �,� lần lượt là chân đường vuông góc kẻ từ  đến �� và ��. Chứng minh:

a) △���=△���.

b) ��⊥��.

Hướng dẫn giải:

loading...

a) Xét △��� và △��� có

�^=�^=90∘ (giả thiết);

�� cạnh chung;

���^=���^ (�� là tia phân giác).

Vậy △���=△��� (cạnh huyền - góc nhọn).

b) △���=△��� (chứng minh trên)

⇒��=�� (hai cạnh tương ứng).

Gọi  là giao điểm của �� và ��.

Xét △��� và △���, có

��=�� (chứng minh trên);

���^=���^ (�� là tia phân giác);

OH chung.

Do đó △���=△��� (c.g.c)

⇒���^=���^ (hai góc tương ứng)

Mà ���^+���^=180∘ nên ���^=���^=90∘.

Vậy ��⊥��.

7 tháng 3 2023

giúp chúng ta được cung cấp đầy đủ các chất dinh dưỡng hơn thay vì ăn đúng 1 loại và chỉ cung cấp được mỗi chất dinh dưỡng ấy

(3 điểm) Đọc đoạn thông tin sau và trả lời các câu hỏi bên dưới: Theo thống kê của ngành Kiểm lâm, ở khu vực các tỉnh Bắc Trung Bộ, mùa cháy rừng từ tháng 4 đến hết tháng 9, cao điểm là từ tháng 6 đến tháng 8. Vì thế, lực lượng kiểm lâm khuyến cáo người dân tuyệt đối không được xử lí thực bì, đốt nương làm rẫy, đồng thời tổ chức lực lượng thường trực 24/24 canh phòng lửa rừng, phát...
Đọc tiếp

(3 điểm) Đọc đoạn thông tin sau và trả lời các câu hỏi bên dưới:

Theo thống kê của ngành Kiểm lâm, ở khu vực các tỉnh Bắc Trung Bộ, mùa cháy rừng từ tháng 4 đến hết tháng 9, cao điểm là từ tháng 6 đến tháng 8. Vì thế, lực lượng kiểm lâm khuyến cáo người dân tuyệt đối không được xử lí thực bì, đốt nương làm rẫy, đồng thời tổ chức lực lượng thường trực 24/24 canh phòng lửa rừng, phát hiện sớm điểm cháy để chữa cháy kịp thời. 

(Nguồn: https://baochinhphu.vn/print/kho-khan-chong-chay-rung-trong-mua-dich-102294890.htm truy cập ngày 20/02/2022)

a) Vì sao khu vực các tỉnh Bắc Trung Bộ mùa cháy rừng thường xảy ra từ tháng 4 đến hết tháng 9, cao điểm là từ tháng 6 đến tháng 8?

b) Nêu những nguyên nhân có thể dẫn đến cháy rừng. 

c) Cần có những biện pháp nào để hạn chế cháy rừng. 

0
13 tháng 4 2023

A. Ta có: $\angle BAD=\angle CAD$ $\angle ADB=120^{\circ}-\angle BAD=120^{\circ}-\angle CAD =$ $\angle ACD$ Vậy $AD$ là phân giác trong của $\angle A$ trong tam giác $ABC$ Do đó ta có $\frac{BD}{DC}=\frac{AB}{AC}$ (định lí phân giác) Mà $\angle A=\angle AHD$ (Do $H$ thuộc đường thẳng $AC$ là đường cao của tam giác $ABD$) $\angle HDA=180^{\circ}-\angle BDA=180^{\circ}-\angle B=120^{\circ}=\angle C$ Vậy $\frac{HD}{DC}=\frac{AD}{AC}=\frac{AB}{AC}=\frac{BD}{DC}$ Vậy $HD=BD$ và $\angle B=60^{\circ}=\angle HAD$ Do đó $\triangle AHD \cong \triangle ABD$ Vậy $\triangle ABC \cong \triangle AHD$ B. Ta có $\angle ADB=120^{\circ}-\angle BAD=120^{\circ}-\angle DAC=\angle ACD$ Lại có $AD$ là phân giác trong của $\angle A$ Do đó, ta có: $\frac{BD}{DC}=\frac{AB}{AC}=\frac{BD}{DA}$ Vậy $DC=DA$, vậy $AD$ là đường trung trực của $BH$ C. Ta có $\angle AHD = \angle B = 60^{\circ}=\angle HAC$, vậy $\triangle AHD \sim \triangle ACH$ Do đó $\dfrac{HA}{HD}= \dfrac{HC}{HA}$ Vậy $HA=HC$ D. Ta có $\angle ADB=120^{\circ}-\angle BAD=120^{\circ}-\angle DAC=\angle ACD$ Do đó tam giác $ABC$ cân tại $B$, ta có $DC>AB$ (Bất đẳng thức tam giác) E. Gọi $E$ là trung điểm của $CS$ thì ta có $CE=\frac{1}{2}CS$ Mà $\angle ACB=\angle AHB=90^{\circ}$, do đó $AH//CB$, ta có $\triangle AHB \sim \triangle ACB$ Vậy $\dfrac{AB}{AC}=\dfrac{HB}{BC}$ Do đó $\dfrac{HB}{AB}=\dfrac{BC}{AC}$ Vì $HEBC$ là hình bình hành nên ta có $BC=HE$ Vậy $\dfrac{HB}{AB}=\dfrac{HE}{AC}$ Lại có $\triangle HSD \sim \triangle AHC$ Vậy $\dfrac{HS}{AC}=\dfrac{HD}{AH}$ Do đó $\dfrac{HE}{AC}=\dfrac{HD+DE}{AC}=\dfrac{HD}{AC}+\dfrac{DE}{AC}$ Vì $HA=HC$ nên ta có $HD=\frac{1}{2}AC$ Vậy $\dfrac{HE}{AC}=\dfrac{1}{2}+\dfrac{DE}{AC}$ Mà $HE=\frac{1}{2}CS=\frac{1}{4}AB$ nên $\dfrac{HE}{AB}=\dfrac{1}{4}$ Do đó $\dfrac{1}{2}+\dfrac{DE}{AC}=\dfrac{1}{4}$ Vậy $\dfrac{DE}{AC}=-\dfrac{1}{4}$ Ta có $\triangle BDS \sim \triangle ACS$ Vậy $\dfrac{BD}{AC}=\dfrac{DS}{CS}$ Mà $\angle B =\angle HAD=60^{\circ} =\angle SDC$ Nên tam giác $SDC$ cũng là tam giác đều với $SD=DC$ Vậy $\dfrac{BD}{AC}=\dfrac{DS}{CS}=\dfrac{1}{2}$ Do đó $DE=\frac{-1}{4}AC$, suy ra $DE$ song song với $AC$ Lại có $\angle AHB=90^{\circ}$ nên $BH$ vuông góc với $AC$ Do đó $AD$ là đường trung trực của $BH$ nên $DE$ cũng là đường trung trực của $BH$ Vậy ta được $A,D,E$ thẳng hàng Chúc bạn học tốt! 🙂

23 tháng 4 2023

Kẻ ��⊥�� (với �∈��).

Gọi �� là tia đối của tia ��.

Vì ���^ và ���^ là hai góc kề bù mà ���^=120∘ nên ���^=60∘ (1) 

Ta có �� là phân giác của ���^⇒���^=12���^=60∘ (2)

Từ (1) và (2) suy ra �� là tia phân giác của ���^

⇒��=�� (tính chất tia phân giác của một góc) (3)

Vì �� là phân giác của ���^ nên ��=�� (tính chất tia phân giác của một góc) (4)

Từ (3) và (4) suy ra ��=��.

17 tháng 3 2023

 Vai trò của thoát hơi nước đối với đời sống thực vật:

+ Là động lực đầu trên đóng vai trò như lực kéo giúp vận chuyển dòng nước và các chất khoáng hòa tan từ rễ lên lá đến các bộ phận khác của cây trên mặt đất.

+ Khí khổng mở rộng trong quá trình thoát hơi nước tạo điều kiện cho khí CO2 đi vào bên trong tế bào lá, cung cấp nguyên liệu cho quá trình quang hợp và giải phóng O2 ra ngoài không khí.

+ Hơi nước thoát ra ngoài mang theo một lượng nhiệt nhất định giúp hạ nhiệt độ của lá, bảo vệ lá cây vào những ngày nắng nóng, đảm bảo cho các quá trình sinh lí diễn ra bình thường.

Đứng dưới bóng cây mát hơn đứng dưới mái che làm bằng vật liệu xây dựng vì:

- Khoảng 98% lượng nước mà cây hút từ rễ sẽ thoát ra ngoài môi trường qua quá trình thoát hơi nước qua lá. Chính lượng nước này sẽ giúp lạ hạ nhiệt độ ở bề mặt lá và tán cây, thông thường là thấp hơn khoảng 5-10 độ C so với môi trường trống trơn.

- Bên cạnh đó, quá trình quang hợp ở cây xanh sẽ giúp hấp thụ khí ��2, thải khí �2 nên giúp chúng ta dễ thở hơn. Không chỉ vậy, tán lá ở thực vật còn có khả năng hấp thụ khí độc, lọc bụi nên khi đứng dưới tán cây, ta sẽ cảm thấy vừa mát mẻ, vừa dễ chịu.

Trong khi đó, mái che bằng vật liệu xây dựng không hề có được những khả năng này, ngược lại, chúng còn hấp thụ nhiệt và khiến cho phần không gian phía dưới càng thêm bí bách.

 

 

27 tháng 10 2023

- Thoát hơi nước có vai trò: tạo động lực cho vận chuyển nước và chất khoáng trong cây; giúp lá cây không bị đốt nóng dưới ánh nắng mặt trời; trao đổi khí giữa cây và môi trường.

- Khi đứng dưới bóng cây thấy mát hơn đứng dưới mái che bằng vật liệu xây dựng vì:

+ Cây xanh có khả năng thoát hơi nước. Ngồi dưới bóng cây có hơi nước thoát ra từ lá cây, có cây che bóng mát nên cảm thấy mát mẻ, dễ chịu hơn ngồi dưới mái che bằng vật liệu xây dựng. 

+ Vật liệu xây dựng, thông thường bao gồm các loại mái sắt thép, tôn nhựa lại thường có cơ chế bức xạ nhiệt trực tiếp với ánh sáng mặt trời nên hấp thụ nhiệt lớn. 

18 tháng 4 2023

Ta có  thuộc phân giác của �^;

��⊥����⊥�� ⇒��=�� (tính chất tia phân giác của một góc).

Gọi  là trung điểm của ��.

Xét △��� và △���, có

���^=���^=90∘ (�� là trung trực của �� ),

��=�� (già thiết),

�� là cạnh chung.

Do đó △���=△��� (hai cạnh góc vuông)

⇒��=�� (hai cạnh tương ứng).

Xét △��� và △���, có

���^=���^=90∘ (giả thiết);

��=�� (chứng minh trên);

��=�� (chứng minh trên).

Do đó △���=△��� (cạnh huyền - cạnh góc vuông)

⇒��=�� (hai cạnh tương ứng).

Ta có D thuộc phân giác của \widehat{A};

D H \perp A BD K \perp A C \Rightarrow D H=D K (tính chất tia phân giác của một góc).

Gọi G là trung điểm của BC.

Xét \triangle B G D và \triangle C G D, có

\widehat{B G D}=\widehat{C G D}=90^{\circ} (DG là trung trực của B C ),

BG=CG (già thiết),

DG là cạnh chung.

Do đó \triangle B G D=\triangle C G D (hai cạnh góc vuông)

\Rightarrow B D=C D (hai cạnh tương ứng).

Xét \triangle B H D và \triangle C K D, có

\widehat{B H D}=\widehat{C K D}=90^{\circ} (giả thiết);

D H=D K (chứng minh trên);

B D=C D (chứng minh trên).

Do đó \triangle B H D=\triangle C K D (cạnh huyền - cạnh góc vuông)

\Rightarrow B H=C K (hai cạnh tương ứng).

11 tháng 3 2023

Phương trình quang hợp:

quang hợp olm

Từ phương trình ta thấy quang hợp lấy CO2 làm nguyên liệu và giải phóng ra ngoài môi trường khí O2, do đó, cây xanh có vai trò quan trọng trong điều hoà không khí: giúp cân bằng lượng khí CO2 và O2 trong khí quyển.

16 tháng 3 2023

quang hợp olm

Từ phương trình ta thấy quang hợp lấy CO2 làm nguyên liệu và giải phóng ra ngoài môi trường khí O2, do đó, cây xanh có vai trò quan trọng trong điều hoà không khí: giúp cân bằng lượng khí CO2 và O2 trong khí quyển.

9 tháng 4 2023

loading...

Gọi  là giao điểm của �� và ��⇒��=��.

Ta có ��=23����=23�� (tính chất trọng tâm).

Vì ��=�� nên ��=��⇒△��� cân tại 

⇒���^=���^

Xét △��� và △��� có ��=�� (giả thiết);

���^=���^ (chứng minh trên);

�� là cạnh chung.

Do đó △���=△��� (c.g.c)

⇒���^=���^ (hai góc tưong ứng)

⇒△��� cân tại �⇒��=��.

Từ đó suy ra △���=△��� (c.c.c)

⇒���^=���^. (hai góc tương ứng)

Mà ���^+���^=180∘⇒���^=���^=90∘⇒��⊥�� hay ��⊥��.

17 tháng 4 2023

�)

Ta có : BE là đường trung tuyến cạnh AC

và : CF là đường trung tuyến cạnh AB

⇒��=��⇒Δ���cân tại�

Nối AG

Xét ΔABC có BE và CF là 2 đường trung tuyến cắt nhau tại G

⇒G là trọng tâm ΔABC

và : AG là đường trung tuyến ứng với cạnh BC

ΔABC cân tại A nên đường trung tuyến AG cũng là đường cao => AG ⊥ BC 

 

image

 

image  

a) Ta có DM=DG \Rightarrow GM=2 GD.

Ta lại có G là giao điểm của BD và CE \Rightarrow G là trọng tâm của tam giác ABC

\Rightarrow BG=2 GD.

Suy ra BG=GM.

Chứng minh tương tự ta được CG=GN.

b) Xét tam giác GMN và tam giác GBC có GM=GB (chứng minh trên);

\widehat{MGN}=\widehat{BGC} (hai góc đối đỉnh);

GN=GC (chứng minh trên).

Do đó \triangle GMN=\triangle GBC (c.g.c)

\Rightarrow MN=BC (hai cạnh tương ứng).

Theo chứng minh trên \triangle GMN=\triangle GBC \Rightarrow \widehat{NMG}=\widehat{CBG} (hai góc tương ứng).

Mà \widehat{NMG} và \widehat{CBG} ờ vị trí so le trong nên MN // BC.

20 tháng 4 2023

a) Ta có ��=��⇒��=2��.

Ta lại có  là giao điểm của �� và ��⇒� là trọng tâm của tam giác ���

⇒��=2��.

Suy ra ��=��.

Chứng minh tương tự ta được ��=��.

b) Xét tam giác ��� và tam giác ��� có ��=�� (chứng minh trên);

���^=���^ (hai góc đối đỉnh);

��=�� (chứng minh trên).

Do đó △���=△��� (c.g.c)

⇒��=�� (hai cạnh tương ứng).

Theo chứng minh trên △���=△���⇒���^=���^ (hai góc tương ứng).

Mà ���^ và ���^ ờ vị trí so le trong nên �� // ��.