K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2020

G/s \(n+26=a^3\) và \(n-11=b^3\) với a,b là các STN

\(\Rightarrow a^3-b^3=n+26-n+11\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)=37\)

Vì \(\hept{\begin{cases}a-b>0\\a^2+ab+b^2\ge0\end{cases}\left(\forall a,b\right)}\)

Ta có 2 TH sau:

Nếu \(\hept{\begin{cases}a-b=1\\a^2+ab+b^2=37\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b+1\\a^2+ab+b^2=37\end{cases}}\)

\(\Leftrightarrow\left(b+1\right)^2+\left(b+1\right)b+b^2-37=0\)

\(\Leftrightarrow3b^2+3b-36=0\)

\(\Leftrightarrow\left(b-3\right)\left(b+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}b=3\left(tm\right)\\b=-4\left(ktm\right)\end{cases}}\Rightarrow b=3\Rightarrow a=4\)

\(\Rightarrow n=38\)

Nếu \(\hept{\begin{cases}a-b=37\\a^2+ab+b^2=1\end{cases}}\)

\(\Leftrightarrow\left(b+37\right)^2+\left(b+37\right)b+b^2=1\)

\(\Leftrightarrow b^2+74b+1369+b^2+37b+b^2-1=0\)

\(\Leftrightarrow3b^2+111b+1368=0\)

\(\Leftrightarrow b^2+37b+456=0\)

\(\Leftrightarrow\left(b^2+37b+\frac{1369}{4}\right)+\frac{455}{4}=0\)

\(\Leftrightarrow\left(b+\frac{37}{2}\right)^2=-\frac{455}{4}\)

=> vô lý

Vậy n = 38

6 tháng 10 2020

a) \(\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}\cdot\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

\(=3-1=2\)

b) \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)

\(=\left(\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}}\right)\cdot\left(\sqrt{2}\cdot\sqrt{2+\sqrt{3}}\right)\cdot\left(\sqrt{3}-1\right)\)

\(=\left(4-3\right)\cdot\sqrt{4+2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=3-1=2\)