K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2020

biến đổi tương đương thôi , EZ !

\(BĐT< =>\frac{a\left(c+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}+\frac{b\left(a+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}+\frac{c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}\)

\(< =>\frac{a\left(c+1\right)+b\left(a+1\right)+c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}\)

\(< =>\frac{ab+bc+ca+a+b+c}{ab+bc+ca+a+b+c+1+abc}\ge\frac{3}{4}\)

\(< =>4\left(ab+bc+ca+a+b+c\right)\ge3\left(ab+bc+ca+a+b+c\right)+6\)

\(< =>ab+bc+ca+a+b+c\ge6\)

Theo đánh giá của Bất đẳng thức Cauchy thì :

\(ab+bc+ca\ge3\sqrt[3]{abbcca}=3\sqrt[3]{a^2b^2c^2}\)

\(a+b+c\ge3\sqrt[3]{abc}\)

Vậy Bất đẳng thức được hoàn tất chứng minh 

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

20 tháng 11 2019

x,y là số  nguyên tố đúng ko? bn có nhiueeuf câu hỏi nên mik trả lời nhầm.(ko phait thì thui nhé)

20 tháng 11 2019

\(\left(3x^2+6x+3\right)+\left(3y^2+3y+1\right)+y^2-8=0\)

\(\Leftrightarrow3\left(x+1\right)^2+3\left(y+\frac{1}{2}\right)^2-\frac{9}{4}-8=0\)

\(\Leftrightarrow12\left(x+1\right)^2+3\left(y+1\right)^2=41\)

\(\Rightarrow12\left(x+1\right)^2\le41\Rightarrow\left(x+1\right)^2\le3\Rightarrow x+1\in\left\{1;0;-1\right\}\Rightarrow x\in\left\{0;-1;-2\right\}\)

Bạn làm nốt

20 tháng 11 2019

thanh niên này chắc VIP dài quá:))

** Max 

\(A^2=\left(\sqrt{x+y}\cdot1+\sqrt{y+z}\cdot1+\sqrt{z+x}\cdot1\right)^2\)

Theo bunhia ta có:

\(A^2\le\left(1+1+1\right)\left(x+y+y+z+z+x\right)=6\Rightarrow A\le\sqrt{6}\) tại \(x=y=z=\frac{1}{3}\)

*** Min

Giả sử \(1\ge y\ge x\ge z\)

Ta có:

\(\sqrt{x+y}+\sqrt{y+z}\ge\sqrt{y}+\sqrt{x+y+z}\)

\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}\ge\sqrt{y\left(x+y+z\right)}\)

\(\Leftrightarrow xz=0\)

Đẳng thức xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=0\\z=0\end{cases}}\)

Mặt khác:

\(\sqrt{y}+\sqrt{z+x}\ge\sqrt{x+y+z}\)

\(\Leftrightarrow\sqrt{y\left(z+x\right)}=0\)

Đẳng thức xảy ra \(\orbr{\begin{cases}y=0\\z+x=0\end{cases}}\)

Kết hợp 2 dấu đẳng thức xảy ra thì \(x=z=0;y=1\)

Khi đó 

\(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)

\(\ge\sqrt{x+y+z}+\sqrt{x+y+z}=2\sqrt{x+y+z}=2\)

Dấu "=" xảy ra tại \(\left(x;y;z\right)=\left(0;1;0\right)\) và các hoán vị.

21 tháng 11 2019

Em có cách này cho phần min nhưng không chắc lắm..

Min:

Giả sử \(x\ge y\ge z\)

\(A=\sqrt{2\left(x+y+z\right)+2\Sigma_{cyc}\sqrt{\left(x+y\right)\left(z+y\right)}}\) (bình phương lên rồi lấy căn:v)

\(\ge\sqrt{2\left(x+y+z\right)+2\Sigma_{cyc}\left(\sqrt{xz}+y\right)}\)

\(=\sqrt{4\left(x+y+z\right)+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}\ge\sqrt{4\left(x+y+z\right)}=2\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(1;0;0\right)\) và các hoán vị.

20 tháng 11 2019

Đẳng thức đã cho tương đương với 

\(x^2+2xy+y^2+\left(\frac{xy+1}{x+y}\right)^2=2+2xy.\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(xy+1\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right).\frac{xy+1}{x+y}+\left(\frac{xy+1}{x+y}\right)^2=0\)

\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2=0\)

\(\Leftrightarrow x+y-\frac{xy+1}{x+y}=0\)

\(\Leftrightarrow\left(x+y\right)^2=xy+1\)

\(\Leftrightarrow\sqrt{1+xy}=|x+y|\)

Vì x,y là số hữu tỉ nên Vế phải của đẳng thức là số hữu tỉ => Điều phải chứng minh

20 tháng 11 2019

Em chỉ biết mỗi cách liên hợp thôi anh!

PT \(\Leftrightarrow x^3-6x-4+6\left(x-\sqrt[3]{6x+4}\right)\)

\(\Leftrightarrow x^3-6x-4+\frac{6\left(x^3-6x-4\right)}{x^2+x\sqrt[3]{6x+4}+\left(\sqrt[3]{6x+4}\right)^2}=0\)

\(\Leftrightarrow\left(x^3-6x-4\right)\left(1+\frac{6}{x^2+x\sqrt[3]{6x+4}+\left(\sqrt[3]{6x+4}\right)^2}\right)=0\)

Cái ngoặc to vô nghiệm. Giải cái ngoặc nhỏ khá dễ dàng:D

20 tháng 11 2019

Đặt \(\sqrt[3]{6x+4}=a\Rightarrow a^3-6x=4\)

Kết hợp đề bài, ta có hệ: \(\hept{\begin{cases}6a+4=x^3\\a^3-6x=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x^3-6a=4\\a^3-6x=4\end{cases}}\)

Lấy pt trên trừ pt dưới các kiểu:D

Dùng mô hình ÉP PHEN thu nhỏ để nhảy ^_^

20 tháng 11 2019

TL : 

B1 : Đi 1 chuyến máy bay đi qua tháp ép phen

B2 : Nhảy từ máy bay xuống tháp ép phen

Như vậy bạn đã có thể nhảy cao hơn tháp ép phen rồi . HIHI

k mình nha

20 tháng 11 2019

Áp dụng Bunhiacopxki : 

\(A^2=\left(\sqrt{a+b}.1+\sqrt{b+c}.1+\sqrt{c+a}.1\right)^2\le\left(a+b+b+c+c+a\right)\left(1^2+1^2+1^2\right).\)

\(\Rightarrow A^2\le6\left(a+b+c\right)=6.1=6\)

\(\Rightarrow A\le\sqrt{6}.\)

Vậy giá trị lớn nhất của \(A=\sqrt{6}\)\(\Leftrightarrow\hept{\begin{cases}a+b+c=1\\a=b=c\end{cases}\Leftrightarrow a=b=c=\frac{1}{3}}\)