Cho a, b, c là các số thực dương thoả mãn \(a^2+b^2+c^2=1\)
CMR: \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}+\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}+\frac{c^2+ca+1}{\sqrt{c^3+3ca+b^2}}\ge\sqrt{5}\left(a+b+c\right)\)
Xin mấy anh cao thủ giúp mình nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xử lí mẫu trước, đặt \(a=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
\(\Leftrightarrow a^3=\left(\sqrt[3]{2+\sqrt{5}}\right)^3+\left(\sqrt[3]{2-\sqrt{5}}\right)^3+3\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)
\(\Leftrightarrow a^3=4-3a\)
\(\Leftrightarrow a^3+3a-4=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+a+4\right)=0\)
\(\Rightarrow a=1\)
Vậy \(P=\frac{2019}{a}=2019\)
\(A\le\frac{1}{27}\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)^3\)
Mặt khác :
\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{3\left[4\left(a+b+c\right)+3\right]}\)
\(=3\sqrt{5}\)
\(\Rightarrow A\le\frac{1}{27}\left(3\sqrt{5}\right)^3=5\sqrt{5}\)
Dấu " = " xảy ra khi \(a=b=c=1\)
*) ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Nhân vế với vế của các BĐT trên,ta được: \(\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8abc\)
Dấu bằng xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
Ta có: \(\frac{1}{1+x}=2-\frac{1}{1+y}-\frac{1}{1+z}\)
\(=1-\frac{1}{1+y}+1-\frac{1}{1+z}=\frac{y}{1+y}+\frac{z}{1+z}\)
\(\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)(BĐT Cô - si)
Tương tự, ta có: \(\frac{1}{1+y}\)\(\ge2\sqrt{\frac{xz}{\left(1+x\right)\left(1+z\right)}}\); \(\frac{1}{1+z}\)\(\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Nhân từng vế của các bđt trên, ta được:
\(\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge8.\frac{xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(\Rightarrow8xyz\le1\Rightarrow xyz\le\frac{1}{8}\)
(Dấu "="\(\Leftrightarrow x=y=z=\frac{1}{2}\))
\(\hept{\begin{cases}\frac{ab}{c}+\frac{bc}{a}\ge2b\\\frac{bc}{a}+\frac{ca}{b}\ge2c\\\frac{ca}{b}+\frac{ab}{c}\ge2a\end{cases}}\) :)))
\(\sin^4\alpha+\cos^4\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2-2\sin^2\alpha.\cos^2\alpha=1-2.\frac{1}{4^2}=\frac{7}{8}\)
Ta có: \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}=\frac{a^2+ab+1}{\sqrt{a^2+ab+2ab+c^2}}\ge\frac{a^2+ab+1}{\sqrt{a^2+ab+a^2+b^2+c^2}}=\sqrt{a^2+ab+1}\)
\(\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}=\sqrt{\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+a^2+c^2}\)
\(=\frac{1}{\sqrt{5}}.\sqrt{\left(\frac{9}{4}+\frac{3}{4}+1+1\right)\left(\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+a^2+c^2\right)}\)
\(\ge\frac{1}{\sqrt{5}}\sqrt{\left(\frac{3}{2}\left(a+\frac{b}{2}\right)+\frac{3}{2}b+a+c\right)^2}\)
\(=\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)
=> \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)
Tương tự ta cũng chứng minh đc:
\(\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}b+\frac{3}{2}c+a\right)\)
\(\frac{c^2+ca+1}{\sqrt{c^2+3ca+b^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}c+\frac{3}{2}a+b\right)\)
=> \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}+\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}+\frac{c^2+ca+1}{\sqrt{c^3+3ca+b^2}}\ge\frac{1}{\sqrt{5}}\left(5a+5b+5c\right)\)
\(=\sqrt{5}\left(a+b+c\right)\)
Dấu "=" xảy ra <=> a = b = c =\(\frac{1}{\sqrt{3}}\)